Heat capacity and thermodynamic characteristics of denaturation and glass transition of hydrated and anhydrous proteins.

Biophys Chem

Research Institute of Physics, St.-Petersburg State University, Petrodvorets, 198904 St.-Petersburg, Russia.

Published: November 1997

Calorimetric measurements of absolute heat capacity have been performed for hydrated (11)S-globulin (0 < C(H(2)O) < 25%) and for lysozyme in a concentrated solution, both in the native and denatured states. The denaturation process is observed in hydrated and completely anhydrous proteins; it is accompanied by the appearance of heat capacity increment (Delta(N)(D)C(p)), as is the case for protein solutions. It has been shown that, depending on the temperature and water content, the hydrated denatured proteins can be in a highly elastic or glassy states. Glass transition is also observed in hydrated native proteins. It is found that the denaturation increment Delta(N)(D)C(p) in native protein, like the increment DeltaC(p) in denatured protein in glass transition at low water contents, is due to additional degrees of freedom of thermal motion in the protein globule. In contrast to the conventional notion, comparison of absolute C(p) values for hydrated denatured proteins with the C(p) values for denatured proteins in solution has indicated a dominant contribution of the globule thermal motion to the denaturation increment of protein heat capacity in solutions. The concentration dependence of denaturing heat absorption (temperature at its maximum, T(D), and thermal effect, DeltaQ(D)) and that of glass transition temperature, T(g), for (11)S-globulin have been studied in a wide range of water contents. General polymeric and specific protein features of these dependencies are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0301-4622(97)00072-0DOI Listing

Publication Analysis

Top Keywords

heat capacity
16
glass transition
16
denatured proteins
12
anhydrous proteins
8
observed hydrated
8
increment deltandcp
8
hydrated denatured
8
denaturation increment
8
water contents
8
thermal motion
8

Similar Publications

In various applications, the pore structure of a porous medium must be controlled to facilitate heat and mass transfer, which considerably influence the system performance. Freeze-casting is a versatile technique for creating aligned pores; However, because of the complexity of the associated equipment and the energy inefficiency of liquid-nitrogen-based cooling in a room-temperature environment, limits scalability for industrial applications. This study is aimed at establishing a novel freeze-casting strategy with a simple mold design combining heat-conductive and insulating materials for long-range pore alignment via directional ice growth under deep-freezing conditions, rendering it feasible for large-scale production.

View Article and Find Full Text PDF

Evaluating energy consumption patterns in novel foamed ternary alkali-activated masonry blocks.

Sci Rep

January 2025

Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Veszprém, Hungary.

This study endeavors to tackle the energy requirements of the building sector by employing passive design strategies. However, there exists a dearth of comprehension regarding the energy efficiency performance of foamed alkali-activated materials. To bridge this research gap, the study proposes a solution in the form of a thermally proficient wall material crafted from ceramic tile dust (CTD), class C fly ash (FA), and Ground Granulated Blast-Furnace Slag (GGBS), all of which are industrial by-products.

View Article and Find Full Text PDF

Purpose: Exercise-induced heat acclimation can mitigate age-related reductions in heat-loss capacity, though performing repeated bouts of strenuous exercise in the heat may be untenable for many older adults. While short-term passive heat acclimation (e.g.

View Article and Find Full Text PDF

A Thermally Robust Biopolymeric Separator Conveys K Transport and Interfacial Chemistry for Longevous Potassium Metal Batteries.

ACS Nano

January 2025

College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China.

Potassium metal batteries (KMBs) hold promise for stationary energy storage with certain cost and resource merits. Nevertheless, their practicability is greatly handicapped by dendrite-related anodes, and the target design of specialized separators to boost anode safety is in its nascent stage. Here, we develop a thermally robust biopolymeric separator customized via a solvent-exchange and amino-siloxane decoration strategy to render durable and safe KMBs.

View Article and Find Full Text PDF

The current study investigated the effect of a single administration of human chorionic gonadotropin hormone (hCG) and its nanoparticles (NPs) on testicular hemodynamics using Doppler ultrasonography, testicular volume, testicular echotexture (PIX), and circulating testosterone and nitric oxide (NO) in pubescent goat bucks during summer months. Fifteen Baladi goats were divided into three groups (5 in each) and subjected to a single intramuscular administration of one ml of physiological saline ( control group), one ml containing 500 IU of hCG (hCG group) or one ml containing 125 IU of hCG NPs (hCG NPs group). Testicular hemodynamics assessment was done just before administration (0 h), and at 2, 4, 6, 24, and daily till 7 days after administration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!