SCA: symmetry-based center assignment of 2D projections of symmetric 3D objects.

J Struct Biol

Institut de Biologie Structurale, UMR 5057 CNRS, CEA, UJF, 41 rue Jules, Horowitz, 38027 Grenoble, France.

Published: February 2007

A method for finding the center of cryo-EM images which correspond to the projections of a symmetric 3D structure, based on mathematical properties of symmetry adapted functions and the Fourier-Bessel transform, is presented. It is a model independent one-step procedure with no parameters to be chosen by the user. The proposed method is tested in one synthetic tetrahedral case with different noise levels and in two real cases with D7 and icosahedral symmetries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsb.2006.08.004DOI Listing

Publication Analysis

Top Keywords

projections symmetric
8
sca symmetry-based
4
symmetry-based center
4
center assignment
4
assignment projections
4
symmetric objects
4
objects method
4
method finding
4
finding center
4
center cryo-em
4

Similar Publications

SIRE: Scale-invariant, rotation-equivariant estimation of artery orientations using graph neural networks.

Med Image Anal

January 2025

Department of Applied Mathematics, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.

The orientation of a blood vessel as visualized in 3D medical images is an important descriptor of its geometry that can be used for centerline extraction and subsequent segmentation, labeling, and visualization. Blood vessels appear at multiple scales and levels of tortuosity, and determining the exact orientation of a vessel is a challenging problem. Recent works have used 3D convolutional neural networks (CNNs) for this purpose, but CNNs are sensitive to variations in vessel size and orientation.

View Article and Find Full Text PDF

Large-scale rock burst disasters often occur in high-stress and deep-buried tunnels, due to challenges in accurate forecasting and the lack of clarity regarding the underlying mechanisms largely. This study combined on-site stress drilling tests, coupled finite and discrete element simulations, and theoretical calculations to examine unloading damage, rockburst evolution, and deformation failure of the high-stress and deep-buried Xuefengshan No.1 tunnel.

View Article and Find Full Text PDF

Human brucellosis remains a significant public health issue in the Ili Kazak Autonomous Prefecture, Xinjiang, China. To assist local Centers for Disease Control and Prevention (CDC) in promptly formulate effective prevention and control measures, this study leveraged time-series data on brucellosis cases from February 2010 to September 2023 in Ili Kazak Autonomous Prefecture. Three distinct predictive modeling techniques-Seasonal Autoregressive Integrated Moving Average (SARIMA), eXtreme Gradient Boosting (XGBoost), and Long Short-Term Memory (LSTM) networks-were employed for long-term forecasting.

View Article and Find Full Text PDF

Floods are among the most severe natural hazards, causing substantial damage and affecting millions of lives. These events are inherently multi-dimensional, requiring analysis across multiple factors. Traditional research often uses a bivariate framework relying on historical data, but climate change is expected to influence flood frequency analysis and flood system design in the future.

View Article and Find Full Text PDF

Electron microscopy (EM) techniques have been crucial for understanding the structure of biological specimens such as cells, tissues and macromolecular assemblies. Viruses and related viral assemblies are ideal targets for structural studies that help to define essential biological functions. Whereas conventional EM methods use chemical fixation, dehydration, and staining of the specimens, cryogenic electron microscopy (cryo-EM) preserves the native hydrated state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!