Based on recent X-ray structures of the oxygen-evolving complex in photosystem II, quantum chemical geometry optimizations of several thousand structures have been performed in order to elucidate the mechanism for dioxygen formation. Many of the results of these calculations have been presented previously. The energetically most stable structure of the S(4) state has been used in the present study to investigate essentially all the possible ways the O--O bond can be formed in this structure. A key feature, emphasized previously, of the S(4) state is that an oxygen radical ligand is present rather than an Mn(V) state. Previous studies have indicated that this oxygen radical can form an O--O bond by an attack from a water molecule in the second coordination shell. The present systematic investigation has led to a new type of mechanism that is significantly favored over the previous one. A calculated transition-state barrier of 12.5 kcal mol(-1) was found for this mechanism, whereas the best previous results gave 18-20 kcal mol(-1). A requirement on the spin alignment for a low barrier is formulated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200600774 | DOI Listing |
Chemosphere
January 2025
Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), Washington Luís Road, Km 235, 13565-905, São Carlos, SP, Brazil.
Innovative applications of cobalt tungstate nanoparticles (CoWO NPs) are directly linked to their increased production and consumption, which can consequently increase their release into aquatic ecosystems and the exposure of organisms. Microalgae are autotrophic organisms that contribute directly to global primary productivity and provide oxygen for maintaining many organisms on Earth. In this paper, we assessed the toxicity of CoWO NPs when in contact with the freshwater microalga Raphidocelis subcapitata (Chlorophyceae).
View Article and Find Full Text PDFACS Omega
December 2024
Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-0043, Japan.
Photosynthetic water oxidation is a vital process responsible for producing dioxygen and supplying the energy necessary to sustain life on Earth. This fundamental reaction is catalyzed by the oxygen-evolving complex (OEC) of photosystem II, which houses the MnCaO cluster as its catalytic core. In this study, we specifically focus on the D1-Glu189 amino acid residue, which serves as a direct ligand to the MnCaO cluster.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
November 2024
Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
The present study aimed to investigate the impact of progressive drought stress (100%, 75%, 50%, and 25% of field capacity) on photosynthetic light reactions of tomato plants. The imposed drought caused a gradual reduction in leaf RWC leading to a decline in pigment concentration and growth indices. Significant alteration in the OJIP fluorescence transient curves and the formation of specific fluorescence bands (L, K, J, H, and G) gradually increased as drought severity increased.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden.
Photosystem II (PSII) catalyzes light-driven water oxidation that releases dioxygen into our atmosphere and provides the electrons needed for the synthesis of biomass. The catalysis occurs in the oxygen-evolving oxo-manganese-calcium (MnOCa) cluster that drives the oxidation and deprotonation of substrate water molecules leading to the O formation. However, despite recent advances, the mechanism of these reactions remains unclear and much debated.
View Article and Find Full Text PDFCurr Microbiol
December 2024
State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!