Hepatic steatosis is a recognized problem in patients after orthotopic liver transplant (OLT). However, de novo development of nonalcoholic fatty liver disease (NAFLD) has not been well described. The aim of this study was to determine the prevalence and predictors of de novo NAFLD after OLT. A retrospective analysis was performed on 68 OLT patients with donor liver biopsies and posttransplantation liver biopsies. Individual medical charts were reviewed for demographics, indication for OLT, serial histology reports, genotypes for hepatitis C, comorbid conditions, and medications. Liver biopsies were reviewed blindly and graded according to the Brunt Scoring System. Multivariate logistic regression analysis was used to study the risk factors for developing NAFLD. The interval time from OLT to subsequent follow-up liver biopsy was 28 +/- 18 months. A total of 12 patients (18%) developed de novo NAFLD, and 6 (9%) developed de novo NASH. The regression model indicated that the use of angiotensin-converting enzyme inhibitors (ACE-I) was associated with a reduced risk of developing NAFLD after OLT (odds ratio, 0.09; 95% confidence interval, 0.010-0.92; P = 0.042). Increase in body mass index (BMI) of greater than 10% after OLT was associated with a higher risk of developing NAFLD (odds ratio, 19.38; 95% confidence interval, 3.50-107.40; P = 0.001). In conclusion, de novo NAFLD is common in the post-OLT setting, with a significant association with weight gain after transplant. The use of an ACE-I may reduce the risk of developing post-OLT NAFLD.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lt.20932DOI Listing

Publication Analysis

Top Keywords

novo nafld
12
liver biopsies
12
developing nafld
12
risk developing
12
nonalcoholic fatty
8
liver
8
fatty liver
8
liver disease
8
nafld
8
nafld olt
8

Similar Publications

A Guinea Pig Model of Pediatric Metabolic Dysfunction-Associated Steatohepatitis: Poor Vitamin C Status May Advance Disease.

Nutrients

January 2025

Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.

Children and teenagers display a distinct metabolic dysfunction-associated steatohepatitis (MASH) phenotype, yet studies of childhood MASH are scarce and validated animal models lacking, limiting the development of treatments. Poor vitamin C (VitC) status may affect MASH progression and often co-occurs with high-fat diets and related metabolic imbalances. As a regulator of DNA methylation, poor VitC status may further contribute to MASH by regulating gene expression This study investigated guinea pigs-a species that, like humans, depends on vitC in the diet-as a model of pediatric MASH, examining the effects of poor VitC status on MASH hallmarks and global DNA methylation levels.

View Article and Find Full Text PDF

The prevalence of metabolic syndrome has been exponentially increasing in recent decades. Thus, there is an increasing need for affordable and natural interventions for this disorder. We explored the effect of chrysin, a dietary polyphenol, on hepatic lipid and glycogen accumulation, metabolic dysfunction-associated fatty liver disease (MAFLD) activity score and oxidative stress and on hepatic and adipose tissue metabolism in rats presenting metabolic syndrome-associated conditions.

View Article and Find Full Text PDF

Introduction Type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) have shared pathophysiology. We aim to explore associations between these diseases and the impact of T2D therapies on MASLD-related outcomes in a real-world population. Methods A retrospective cohort study included 153 patients with biopsy-proven MASLD.

View Article and Find Full Text PDF

Background & Aims: Hepatic insulin resistance is a fundamental phenomenon observed in both Type 2 diabetes (T2D) and metabolic (dysfunction) associated fatty liver disease (MAFLD). The relative contributions of nutrients, hyperinsulinemia, hormones, inflammation, and other cues are difficult to parse as they are convoluted by interplay between the local and systemic events. Here, we used a well-established human liver microphysiological system (MPS) to establish a physiologically-relevant insulin-responsive metabolic baseline and probe how primary human hepatocytes respond to controlled perturbations in insulin, glucose, and free fatty acids (FFAs).

View Article and Find Full Text PDF

Importance: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver disease and is projected to become the leading indication for liver transplant (LT) in the US. Understanding its clinical burden can help to identify opportunities for prevention and treatment.

Objective: To project the burden of MASLD in US adults from 2020 to 2050.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!