A novel low power, low cost, highly sensitive, miniaturized light emitting diode (LED) based flow detector has been used as optical detector for the detection of sample components in high performance liquid chromatography (HPLC). This colorimetric detector employs two LEDs, one operating in normal mode as a light source and the other is reverse biased to work as a light detector. Instead of measuring the photocurrent directly, a simple timer circuit is used to measure the time taken for the photocurrent generated by the emitter LED (lambda(max) 500 nm) to discharge the detector LED (lambda(max) 621 nm) from 5 V (logic 1) to 1.7 V (logic 0) to give digital output directly without using an A/D converter. Employing a post-column reagent method, a Nucleosil 100-7 column (functionalized with iminodiacetic acid (IDA) groups) was used to separate a mixture of transition metal complexes, manganese(II) and cobalt(II) in 4-(2-pyridylazo)-resorcinol (PAR). All optical measurements were taken by using both the in-built HPLC variable wavelength detector and the proposed paired-emitter-detector-diode (PEDD) optical detector configured in-line for data comparison. The concentration range investigated using the PEDD was found to give a linear response to the Mn(II) and Co(II) PAR complexes. The effects of flow rate and emitter LED light source intensity were investigated. Under optimised conditions the PEDD detector offered a linear range of 0.9-100 microM and LOD of 0.09 microM for Mn-PAR complex. A linear range of 0.2-100 microM and LOD of 0.09 microM for Co-PAR complex was achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b602846bDOI Listing

Publication Analysis

Top Keywords

detector
9
optical detector
8
light source
8
emitter led
8
led lambdamax
8
linear range
8
microm lod
8
lod 009
8
009 microm
8
novel integrated
4

Similar Publications

Design optimization of a 1-D array of stemless plastic scintillation detectors.

Med Phys

January 2025

Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.

Background: A stemless plastic scintillation detector (SPSD) is composed of an organic plastic scintillator coupled to an organic photodiode. Previous research has shown that SPSDs are ideally suited to challenging dosimetry measurements such as output factors and profiles in small fields. Lacking from the current literature is a systematic effort to optimize the performance of the photodiode component of the detector.

View Article and Find Full Text PDF

On the correction factors for small field dosimetry in 1.5T MR-linacs.

Phys Med Biol

January 2025

Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, Athens, Attica, 11527, GREECE.

Clinical dosimetry in the presence of a 1.5T magnetic field is challenging, let alone in case small fields are involved. The scope of this study is to determine a set of relevant correction factors for a variety of MR-compatible detectors with emphasis on small fields.

View Article and Find Full Text PDF

Background: The latest generation of computed tomography (CT) systems based on photon-counting detector promises significant improvements in several clinical applications, including chest imaging.

Purpose: The aim of the study is to evaluate the image quality of ultra-high-resolution (UHR) photon-counting detector CT (PCD-CT) of the lung using four sharp reconstruction kernels.

Material And Methods: This retrospective study included 25 patients (11 women and 14 men; median age, 71 years) who underwent unenhanced chest CT from April to May 2023.

View Article and Find Full Text PDF

Context: Exploration for renewable and environmentally friendly energy sources has become a major challenge to overcome the depletion of fossil fuels and their environmental hazards. Therefore, solar cell technology, as an alternative solution, has attracted the interest of many researchers. In the present work, the CsXInBr (X = Cu or Ag) compounds as lead-free halide perovskites have been studied due to their direct energy gap in the range of solar energy, thermodynamic stability, low effective mass of electrons, and high absorption coefficient.

View Article and Find Full Text PDF

The Particle Time of Flight (PTOF) diagnostic is a chemical vapor deposition diamond-based detector and is the only diagnostic for measuring nuclear bang times of low yield (<1013) shots on the National Ignition Facility. Recently, a comprehensive study of detector impulse responses revealed certain detectors with very fast and consistent impulse responses with a rise time of <50 ps, enabling low yield burn history measurements. At the current standoff of 50 cm, this measurement is possible with fast 14 MeV neutrons from deuterium-tritium (DT) fusion plasmas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!