The equilibrium constants of Cu(II), Zn(II), Ca(II) and Gd(III) with 1,15-bis(N,N-dimethyl)-5,11-dioxo-8-(N-benzyl)-1,4,8,12,15-pentaazapentadecane (La) have been studied at 25 degrees C and an ionic strength of 0.15 mol dm-3. Copper forms more stable complexes with La than the other metal ions investigated. This is probably due to the ease with which Cu(II) deprotonates the nitrogen donor atoms of the amide groups. UV/Vis spectrophotometric data indicate tetradentate binding of the ligand towards copper in [CuLaH-1] and pentadentate binding in [CuLaH-2]. Octanol-water partition coefficients of Cu(II)-La complexes indicate that although these species are largely hydrophilic, approximately 5.62% of the [CuLaH-1] complex goes into the organic phase. This percentage may promote dermal absorption of copper with a calculated penetration rate of 3.75x10(-4) mm h-1. The [CuLaH-1] species which predominates at pH 7.4 is a poor mimic of native copper-zinc superoxide dismutase. Blood-plasma simulation studies predict that La is unable to increase the low molecular mass copper fraction in vivo. This has been confirmed by biodistribution patterns, which are similar to those of 64CuCl2.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b602977aDOI Listing

Publication Analysis

Top Keywords

metal ions
8
solution chemistry
4
chemistry 115-bisnn-dimethyl-511-dioxo-8-n-benzyl-1481215-pentaazapentadecane
4
115-bisnn-dimethyl-511-dioxo-8-n-benzyl-1481215-pentaazapentadecane metal
4
ions biological
4
biological interest-insights
4
interest-insights active
4
active metal
4
metal ion
4
ion therapeutics
4

Similar Publications

In this study, we report the modification of a monolithic γ-aluminum oxy-hydroxide (γ-AlOOH) aerogel with cellulose nanofibers (CNFs) using the sol-gel method via supercritical drying. The optimized 2% CNF (w/w) results in a monolithic CNF-γ-AlOOH that is amorphous in nature, along with C-C and C-O-C functional groups. Transmission electron microscopy (TEM) images of the as-synthesized CNF-γ-AlOOH showed CNF embedded in the γ-AlOOH aerogel.

View Article and Find Full Text PDF

The rapid upsurge of metal-organic frameworks (MOFs) has sparked profound interest in their potential as proton conductors for proton exchange membrane fuel cells. However, proton-conducting behaviors of hydrophobic MOFs remain poorly understood compared with their hydrophilic counterparts, largely due to the absence of a microscopic phase separation structure akin to that found in Nafion membranes. Herein, we demonstrate a strategy for regulating the structures and proton conductivities of MOFs by separately incorporating hydrophobic -C(CF)- group alongside hydrophilic -O- and -SO- groups into organic ligands as linkers.

View Article and Find Full Text PDF

Experimental and Theoretical Study of Two 3D Difunctional Electrocatalytic Hybrid Vanadate-Containing Metal-Organic Motifs.

Inorg Chem

January 2025

Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China.

Two novel 3D inorganic-organic hybrids based on [VO]/[VO] clusters, [Cu(bbpy)(VO)]·3HO () and [CuAg(pty)(VO)]·HO () (bbpy = 3,5-bis(1-benzimidazole) pyridine, pty = 4'-(4″-pyridyl)-2,2':6',2″-terpyridine), were isolated in the same POV/Cu/N-heterocycle ligand reaction systems. Hybrids and possess novel three-dimensional bimetallic frameworks derived from [VO]/[VO] clusters and Cu-organic complexes. In , bbpy ligands are grafted by Cu to a grid ribbon 2D sheet, which are connected with benzene-like [VO] to yield a 3D framework.

View Article and Find Full Text PDF

The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.

View Article and Find Full Text PDF

Bioinspired Antiswelling Hydrogel Sensors with High Strength and Rapid Self-Recovery for Underwater Information Transmission.

ACS Appl Mater Interfaces

January 2025

School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

Hydrogel-based sensors typically demonstrate conspicuous swelling behavior in aqueous environments, which can severely compromise the mechanical integrity and distort sensing signals, thereby considerably constraining their widespread applicability. Drawing inspiration from the multilevel heterogeneous structures in biological tissues, an antiswelling hydrogel sensor endowed with high strength, rapid self-recovery, and low swelling ratio was fabricated through a water-induced phase separation and coordination cross-linking strategy. A dense heterogeneous architecture was developed by the integration of "rigid" quadridentate carboxyl-Zr coordination bonds and "soft" hydrophobic unit-rich regions featuring π-π stacking and cation-π interactions into the hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!