Sialidases influence cellular activity by removing terminal sialic acid from glycoproteins and glycolipids. Four genetically distinct sialidases (Neu1-4) have been identified in mammalian cells. In this study, we demonstrate that only lysosomal Neu1 and plasma membrane-associated Neu3 are detected in freshly isolated and activated human T lymphocytes. Activation of lymphocytes by exposure to anti-CD3 and anti-CD28 IgG resulted in a ninefold increase in Neu1-specific activity after growth of cells in culture for 5 days. In contrast, the activity of Neu3 changed minimally in activated lymphocytes. The increase in Neu1 enzyme activity correlated with increased synthesis of Neu1-specific mRNA. Neu1 was present on the surface of freshly isolated and activated CD4 and CD8 T lymphocytes, as determined by staining intact cells with anti-Neu1 IgG and analysis by flow cytometry and by Western blot analysis of biotin-labeled cell surface proteins. Cell surface Neu1 was found tightly associated with a subunit of protective protein/cathepsin A (PPCA). Compared with freshly isolated lymphocytes, activated cells expressed more surface binding sites for galactose-recognizing lectins Erythrina cristagalli (ECA) and Arachis hypogaea. Growth of cells in the presence of sialidase inhibitors 2,3-dehydro-2-deoxy-N-acetylneuraminic acid or 4-guanidino-2-deoxy-2,3-dehydro-N-acetylneuraminic acid resulted in a smaller increase in number of ECA-binding sites and a greater amount of cell surface sialic acid in activated cells. Inhibition of sialidase activity also resulted in reduced expression of IFN-gamma in activated cells. The down-regulation of IFN-gamma occurred at the transcriptional level. Thus, sialidase activity in activated T lymphocytes contributes to the hyposialylation of specific cell surface glycoconjugates and to the production of IFN-gamma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1189/jlb.1105692 | DOI Listing |
Nanotechnology
January 2025
Nanjing Medical University, Department of Neurosurgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Nanjing, 210029, CHINA.
Glioblastoma (GBM) is a malignant tumor with highly heterogeneous and invasive characteristics leading to a poor prognosis. The CD44 molecule, which is highly expressed in GBM, has emerged as a highly sought-after biological marker. Therapeutic strategies targeting the cell membrane protein CD44 have emerged, demonstrating novel therapeutic potential.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America.
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer and the second leading cause of cancer-related mortality globally. Despite advancements in current HCC treatment, it remains a malignancy with poor prognosis. Therefore, developing novel treatment options for patients with HCC is urgently needed.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Advanced Research Support Center, Ehime University, Ehime 791-0295, Japan.
Precise prefractionation of proteome samples is a potent method for realizing in-depth analysis in top-down proteomics. PEPPI-MS (Passively Eluting Proteins from Polyacrylamide gels as Intact species for MS), a gel-based sample fractionation method, enables high-resolution proteome fractionation based on molecular weight by highly efficient extraction of proteins from polyacrylamide gels after SDS-PAGE separation. Thereafter it is essential to effectively remove contaminants such as CBB and SDS from the PEPPI fraction prior to mass spectrometry.
View Article and Find Full Text PDFDiscov Nano
January 2025
Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China.
Human lens epithelial cells (hLECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to hLECs, especially to sub-cellular organelles (e.g.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2025
Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitarias (CIMES), University of Malaga, Calle Marqués de Beccaria, 3, Campus Teatinos s/n, 29010, Malaga, Spain.
Tetrameric AMPA-type ionotropic glutamate receptors are primary transducers of fast excitatory synaptic transmission in the central nervous system, and their properties and abundance at the synaptic surface are crucial determinants of synaptic efficacy in neuronal communication across the brain. The induction of long-term potentiation (LTP) leads to the insertion of GluA1-containing AMPA receptors at the synaptic surface, whereas during long-term depression (LTD), these receptors are internalized into the cytoplasm of the spine. Disruptions in the trafficking of AMPA receptors to and from the synaptic surface attenuate both forms of synaptic plasticity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!