This study examined the effects of dehydration and rehydration with water on Fos and FosB staining in the brainstem of rats. Male rats were water deprived for 48 h (Dehyd, n=7) or 46 h followed by 2 h access to water (Rehyd, n=7). Controls had ad libitum access to water (Con, n=9). Brainstems were stained for Fos and FosB/DeltaFosB using commercially available antibodies. In the nucleus of the solitary tract (NTS), the number of Fos stained neurons was significantly increased by dehydration and increased further following rehydration (Con 5+/-1; Dehyd 22+/-1; Rehyd 48+/-5). The average number of Fos-positive cells in the parabrachial nucleus (PBN) was significantly increased only by rehydration (Con 12+/-2; Dehyd 6+/-2; Rehyd 51+/-4). The area postrema (AP) showed significant increases in Fos staining after dehydration and rehydration (Fos: Con 4+/-1; Dehyd 28+/-3; Rehyd 24+/-3). In the rostral ventrolateral medulla (RVL), Fos staining significantly increased after dehydration and this effect was reduced by rehydration (Con 3+/-1; Dehyd 21+/-2; Rehyd 12+/-1). In contrast, Fos staining in the caudal ventrolateral medulla (CVL) was not significantly influenced following either dehydration or rehydration with water (Con 4+/-1; Dehyd 4+/-1; Rehyd 5+/-1). FosB/DeltaFosB staining in the NTS, AP, and RVL was comparably increased by dehydration and rehydration. In the PBN and CVL, FosB/DeltaFosB staining was not affected by the treatments. Dehydration and rehydration have regionally specific effects on Fos and FosB/DeltaFosB staining in the brainstem.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2006.08.020DOI Listing

Publication Analysis

Top Keywords

dehydration rehydration
20
fosb/deltafosb staining
16
fos fosb/deltafosb
12
increased dehydration
12
rehydration con
12
fos staining
12
rehydration
9
fos
9
rehydration fos
8
staining
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!