The influence of micelle-drug solubilization on the dissolution rate of monodisperse particles of benzocaine has been investigated. A model describing and predicting the initial dissolution rates of spherical particles was derived starting from the boundary layer theory. The dissolution rate of benzocaine spherical particles was determined in water and in solutions of sodium lauryl sulfate (SLS) under static conditions. The derived model was applied to the experimental data. The diffusion coefficients and the aqueous diffusion layer values were estimated from the experimental results and the aforementioned model. The diffusion coefficients and the boundary layer thickness values were also obtained experimentally from the rotating disk method and were used to predict the initial dissolution rates. Excellent correlations were obtained between the experimental and the calculated values at low micellar concentrations. However, obvious deviation was observed at high micellar concentrations. The results obtained from this study suggest that it is possible to predict the initial dissolution rates of monodisperse particles in micellar systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2006.07.017 | DOI Listing |
Int J Pharm
January 2025
School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia. Electronic address:
Nanocarrier-based dry powders for lung disease treatment are crucial, with in vitro and in silico research being pivotal to their success. This study introduces a method for creating Tiotropium-bromide liposomal inhalation dry powder, termed "Trojan-particles," utilizing thin-film hydration and spray-drying with lactose-arginine carriers. Encapsulating tiotropium-bromide in nanoliposomes enhances lung treatment via liposomes' unique features.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.
The coffee-ring effect, caused by uneven deposition of colloidal particles in perovskite precursor solutions, leads to poor uniformity in perovskite films prepared through large-area printing. In this work, the surface of SnO is roughened to construct a Wenzel model, successfully achieving a super-hydrophilic interface. This modification significantly accelerates the spreading of the perovskite precursor solution, reducing the response delay time of perovskite colloidal particles during the printing process.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania.
This study investigates the synthesis of ZnSnO@SiO@5-FU nanoparticles as an additive for bone fillers in dental maxillofacial reconstruction. ZnSnO nanoparticles were synthesized and coated with a SiO shell, followed by the incorporation of 5-Fluorouracil (5-FU), aimed at enhancing the therapeutic properties of classical fillers. Structural analysis using X-ray diffraction confirmed that ZnSnO was the single crystalline phase present, with its crystallinity preserved after both SiO coating and 5-FU incorporation.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Jinduicheng Molybdenum Co., Ltd., Xi'an 710077, China.
The ultrafine MoO powders were prepared by the combination of centrifugal spray drying and calcination in this work. The thermal decomposition behavior of the spherical precursor was studied. The phase constituents, morphologies, particle size, and specific surface areas of MoO powders were characterized at different temperatures.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.
The abrasive wear performance of TiC particle-reinforced high-manganese steel matrix composites with a spherical hierarchical structure under moderate impact energy was investigated. In the composites, TiC particles (10 μm in diameter) were concentrated within discrete spherical composite regions with diameters of about 100 μm. Impact abrasive wear tests were conducted to evaluate the wear performance of the composites with different volume fractions (30%, 40%, and 50%) of TiC particles compared with the matrix and a uniformly distributed TiC particle composite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!