A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DNA damage and repair capacity by comet assay in lymphocytes of white-collar active smokers and passive smokers (non- and ex-smokers) at workplace. | LitMetric

DNA damage and repair capacity by comet assay in lymphocytes of white-collar active smokers and passive smokers (non- and ex-smokers) at workplace.

Toxicol Lett

Department of Medicine and Public Health, Section of Pharmacology, University of Verona, Policlinico GB Rossi, P.le Scuro 10, 37134 Verona, Italy.

Published: December 2006

The comet assay has been widely used to quantify DNA damage in isolated lymphocytes from subjects exposed to several environmental or occupational substances, especially for estimation of oxidative damage in the DNA, which is well-known to be induced by tobacco smoke. Passive smoking or environmental tobacco smoke (ETS) has been included among those substances that cause cancer with sufficient evidence in humans. In this study, we analyzed, by the alkaline version of comet assay, the lymphocyte DNA damage of white-collar active smokers and non- and ex-smokers exposed to ETS at the workplace. We investigated basal DNA damage, DNA oxidation by formamidopyrimidine glycosylase (Fpg), the repair capacity H2O2-induced DNA damage by kinetics studies and lymphocyte GSH levels, the major intracellular defense against exogenous oxidative stress imposed by cigarette smoking. Our results indicated high basal DNA damage with clear significant correlations with urinary nicotine and cotinine, number of cigarettes/day, and an inverse significant correlation with GSH cellular content in active smokers. Significant Fpg-sensitive sites were found in smokers (> 85%), considerably high but not significant in passive non- and ex-smokers (> 51% and 37%, respectively). The DNA repair capacity had seriously decreased in non-smokers > smokers > ex-smokers, while the same damage was repaired in a short time in never smokers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2006.09.003DOI Listing

Publication Analysis

Top Keywords

dna damage
24
repair capacity
12
comet assay
12
active smokers
12
non- ex-smokers
12
dna
9
white-collar active
8
smokers non-
8
damage dna
8
tobacco smoke
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!