The importomer--a peroxisomal membrane complex involved in protein translocation into the peroxisome matrix.

Biochim Biophys Acta

Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, Room 3230 Bonner Hall, 9500 Gilman Drive, UC San Diego, La Jolla, CA 92093-0322, USA.

Published: December 2006

The import of proteins into the peroxisome matrix is an essential step in peroxisome biogenesis, which is critical for normal functioning of most eukaryotic cells. The translocation of proteins across the peroxisome membrane and the dynamic behavior of the import receptors during the import cycle is facilitated by several peroxisome-membrane-associated protein complexes, one of which is called the importomer complex [B. Agne, N.M. Meindl, K. Niederhoff, H. Einwachter, P. Rehling, A. Sickmann, H.E. Meyer, W. Girzalsky, W.H. Kunau, Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery, Mol. Cell 11 (2003) 635-646; P.P. Hazra, I. Suriapranata, W.B. Snyder, S. Subramani, Peroxisome remnants in pex3Delta cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes, Traffic 3 (2002) 560-574. ]. We provide below a brief historical perspective regarding the importomer and its role in peroxisome biogenesis. We also identify areas in which further work is needed to uncover the physiological role of the importomer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2006.08.035DOI Listing

Publication Analysis

Top Keywords

peroxisome matrix
8
proteins peroxisome
8
peroxisome biogenesis
8
peroxisome
6
importomer--a peroxisomal
4
peroxisomal membrane
4
membrane complex
4
complex involved
4
involved protein
4
protein translocation
4

Similar Publications

The role of PPAR in fungal keratitis.

Front Immunol

January 2025

Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.

The treatment of fungal keratitis(FK) remains challenging due to delayed fungal detection and the limited effectiveness of antifungal drugs. Fungal infection can activate both innate and adaptive immune responses in the cornea. Fungi stimulate the production of oxidative stress-related biomarkers and mediate the infiltration of neutrophils, macrophages, and T cells.

View Article and Find Full Text PDF

PEX1 remains functional in peroxisome biogenesis but is rapidly degraded by the proteasome.

bioRxiv

December 2024

Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.

The PEX1/PEX6 AAA-ATPase is required for the biogenesis and maintenance of peroxisomes. Mutations in and disrupt peroxisomal matrix protein import and are the leading cause of Peroxisome Biogenesis Disorders (PBDs). The most common disease-causing mutation in PEX1 is the PEX1 allele, which results in a reduction of peroxisomal protein import.

View Article and Find Full Text PDF

Meteorin-like protein alleviates intervertebral disc degeneration by suppressing lipid accumulation in nucleus pulposus cells via PPARα-CPT1A activation.

Biochim Biophys Acta Mol Basis Dis

December 2024

Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. Electronic address:

Article Synopsis
  • Lipid metabolism disturbances are linked to intervertebral disc degeneration (IDD), particularly in nucleus pulposus (NP) cells, where there's an imbalance in fat synthesis and usage.
  • Exercise may protect against IDD, and myokines like meteorin-like protein (Metrnl) released during exercise could play a role in regulating lipid metabolism in NP cells.
  • The study showed that exercise improves IDD by reducing lipid buildup in NP cells, enhancing extracellular matrix health, and further suggests that Metrnl boosts lipid utilization through a mechanism involving carnitine palmitoyltransferase 1A (CPT1A) activation.
View Article and Find Full Text PDF

Salvianolic acid C promotes renal gluconeogenesis in fibrotic kidneys through PGC1α.

Biochem Biophys Res Commun

January 2025

Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China. Electronic address:

Impaired renal gluconeogenesis is recently identified as a hallmark of chronic kidney disease. However, the therapeutic approach to promote renal gluconeogenesis in CKD is still lacking. We aimed to study whether Salvianolic acid C (SAC), a nature compound extracted from the traditional Chinese medicine Danshen, inhibits renal fibrosis through promotion of gluconeogenesis.

View Article and Find Full Text PDF

Chronic hyperglycemia results in morphological and functional alterations of the kidney and microvascular damage, leading to diabetic nephropathy (DN). Since DN progresses to irreversible renal damage, it is important to elucidate a pharmacological strategy aimed for treating DN in the early stage. Here, we used the type 2 diabetic rat model to induce DN and show a nephroprotective effect following the stimulation of PPAR-α, which stabilized renal tight junction components claudin-2, claudin-5, and claudin-16.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!