Aldehyde load in ischemia-reperfusion brain injury: neuroprotection by neutralization of reactive aldehydes with phenelzine.

Brain Res

The Falk Center for Molecular Therapeutics, Dept. of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, 1801 Maple Ave., Suite 4306, Evanston, IL 60201, USA.

Published: November 2006

In ongoing studies of the neuroprotective properties of monoamine oxidase inhibitors, we found that phenelzine provided robust neuroprotection in the gerbil model of transient forebrain ischemia, with drug administration delayed up to 3 h post reperfusion. Since ischemia-reperfusion brain injury is associated with large increases in the concentrations of reactive aldehydes in the penumbra area, we investigated if the hydrazine function of phenelzine was capable of sequestering reactive aldehydes. Both aminoaldehydes and acrolein are generated from the metabolism of polyamines to putrescine by polyamine oxidase. These toxic aldehydes in turn compromise mitochondrial and lysosomal integrity and initiate apoptosis and necrosis. Previous studies have demonstrated that pharmacological neutralization of reactive aldehydes via the formation of thioacetal derivatives results in significant neuroprotection in ischemia-reperfusion injury, in both focal and global ischemia models. In our studies of acrolein and 3-aminopropanal toxicity, using an immortalized retinal cell line, we found that aldehyde sequestration with phenelzine was neuroprotective. The neuroprotection observed with phenelzine is in agreement with previous studies of aldehyde sequestering agents in the treatment of ischemia-reperfusion brain injury and supports the concept that "aldehyde load" is a major factor in the delayed cell losses of the ischemic penumbra.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2006.09.003DOI Listing

Publication Analysis

Top Keywords

reactive aldehydes
16
ischemia-reperfusion brain
12
brain injury
12
neutralization reactive
8
previous studies
8
aldehydes
5
phenelzine
5
aldehyde load
4
ischemia-reperfusion
4
load ischemia-reperfusion
4

Similar Publications

Correlation of lipid hydrolysis, oxidation, and molecular transformation with volatile compound revolution in pork during postmortem wet-aging process.

Food Chem

December 2024

Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Beijing University of Agriculture, Beijing 102206, PR China.

Lipid hydrolysis and oxidation properties, lipid metabolites, and volatile flavors were investigated to elucidate the wet-aging process (1 h to 10 d) on lipid molecule transformation and volatile flavor evolution in pork. Phospholipase A (PLA) activity increased at 12 h, with lipoxygenase (LOX) increasing from 1 h to 7 d (P < 0.05).

View Article and Find Full Text PDF

Comparison of the aquatic toxicity of diquat and its metabolites to zebrafish Danio rerio.

Sci Rep

December 2024

Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.

Diquat (DQ) is a non-selective, fast-acting herbicide that is extensively used in aquatic systems. DQ has been registered as the substitute for paraquat due to its lower toxicity. However, the widespread presence of DQ in aquatic systems can pose an ecological burden on aquatic organisms.

View Article and Find Full Text PDF

[FER-1 inhibits methylglyoxal-induced ferroptosis in mouse alveolar macrophages ].

Nan Fang Yi Ke Da Xue Xue Bao

December 2024

Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, China.

Objectives: To investigate the inhibitory effect of FER-1 on methylglyoxal-induced ferroptosis in cultured mouse alveolar macrophages.

Methods: MH-S cells derived from mouse alveolar macrophages treated with 90 μg/mL methylglyoxal, 10 μmol/mL FER-1MG+FER-1, or both were examined for intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and ferrous ion (Fe) levels and changes in mitochondrial membrane potential. Western blotting was performed to detect the protein expression levels of glutathione peroxidase 4 (GPX4) and long-chain acyl-CoA synthase 4 (ACSL4).

View Article and Find Full Text PDF

Neofusicoccum parvum is one of the most hazardous pathogens causing mango fruit decay. The present study utilized trans-2-hexenal (TH), a typical antifungal component of plant essential oils (EOs), to control N. parvum both in vivo and in vitro, and attempted to explore the mechanisms involved.

View Article and Find Full Text PDF

Hydroxyacetone (HA) is an atmospheric oxidation product of isoprene and other organic precursors that can form brown carbon (BrC). Measured bulk aqueous-phase reaction rates of HA with ammonium sulfate, methylamine, and glycine suggest that these reactions cannot compete with aqueous-phase hydroxyl radical oxidation. In cloud chamber photooxidation experiments with either gaseous or particulate HA in the presence of the same N-containing species, BrC formation was minor, with similar mass absorption coefficients at 365 nm (<0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!