Objectives: To characterize equine bone marrow (BM)-derived mesenchymal stem cell (MSC) growth characteristics and frequency as well as their adipogenic and osteogenic differentiation potential.
Study Design: In vitro experimental study.
Animals: Foals (n=3, age range, 17-51 days) and young horses (n=5, age range, 9 months to 5 years).
Methods: Equine MSCs were harvested and isolated from sternal BM aspirates and grown up to passage 10 to determine cell-doubling (CD) characteristics. Limit dilution assays were performed on primary and passaged MSCs to determine the frequency of colony-forming units with a fibroblastic phenotype (CFU-F), and the frequency of MSC differentiation into adipocytes (CFU-Ad) and osteoblasts (CFU-Ob).
Results: Initial MSC isolates had a lag phase with a significantly longer CD time (DT=4.9+/-1.6 days) compared with the average DT (1.4+/-0.22 days) of subsequent MSC passages. Approximately 1 in 4224+/-3265 of the total nucleated BM cells displayed fibroblast colony-forming activity. Primary MSCs differentiated in response to adipogenic and osteogenic inductive conditions and maintained their differentiation potential during subsequent passages.
Conclusions: The frequency, in vitro growth rate, and adipogenic and osteogenic differentiation potential of foals and young adult horses are similar to those documented for BM MSCs of other mammalian species.
Clinical Relevance: The results have direct relevance to the use of BM as a potential source of adult stem cells for tissue engineering applications in equine veterinary medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1532-950X.2006.00197.x | DOI Listing |
J Mol Histol
January 2025
School of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150000, China.
Facial nerve injuries lead to significant functional impairments and psychological distress for affected patients. Effective repair of these injuries remains a challenge. For longer nerve gaps, the regeneration outcomes after nerve grafting remain suboptimal due to limited sources and postoperative immune responses.
View Article and Find Full Text PDFJ Biomed Sci
January 2025
Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
Background: Obesity is becoming one of the major non-communicable diseases with increasing incidence and risks that cannot be ignored. However effective and safe clinical treatment strategies still need to be deeply explored. Increased number and volume of adipocytes lead to overweight and obesity.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa.
Osteoporosis, a common metabolic bone disorder, leads to increased fracture risk and significant morbidity, particularly in postmenopausal women and the elderly. Traditional treatments often fail to fully restore bone health and may cause side effects, prompting the exploration of regenerative therapies. Adipose-derived stem cells (ADSCs) offer potential for osteoporosis treatment, but their natural inclination toward adipogenic rather than osteogenic differentiation poses a challenge.
View Article and Find Full Text PDFCells
December 2024
Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany.
The present study investigates the influence of nitrosamines and etoposide on mesenchymal stromal cells (MSCs) in a differentiation state- and biological age-dependent manner. The genotoxic effects of the agents on both neonatal and adult stem cell populations after treatment, before, or during the course of differentiation, and the sensitivity of the different MSC types to different concentrations of MNU or etoposide were assessed. Hereby, the multipotent differentiation capacity of MSCs into osteoblasts, adipocytes, and chondrocytes was analyzed.
View Article and Find Full Text PDFBiomedicines
November 2024
Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
Protein kinase C (PKC) plays an essential role during many biological processes including development from early embryonic stages until the terminal differentiation of specialized cells. This review summarizes the current knowledge about the involvement of PKC in molecular processes during the differentiation of stem/precursor cells into tissue cells with a particular focus on osteogenic, adipogenic, chondrogenic and neuronal differentiation by using a comprehensive approach. Interestingly, studies examining the overall role of PKC, or one of its three isoform groups (classical, novel and atypical PKCs), often showed controversial results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!