AI Article Synopsis

  • The study focuses on how magnetic fields penetrate and interact with magnetized plasma, which is crucial for understanding both plasma physics and astrophysics.
  • Special measurements were carried out using a Hall probe on the DED system of the TEXTOR tokamak, and data were analyzed through a two-fluid plasma model.
  • Key findings include that changes in plasma rotation due to forced magnetic reconnection are influenced by the differential rotation between the DED field and plasma, affecting the excitation of tearing modes through momentum transfer mechanisms.

Article Abstract

The magnetic field penetration process into a magnetized plasma is of basic interest both for plasma physics and astrophysics. In this context special measurements on the field penetration and field amplification are performed by a Hall probe on the dynamic ergodic divertor (DED) on the TEXTOR tokamak and the data are interpreted by a two-fluid plasma model. It is observed that the growth of the forced magnetic reconnection by the rotating DED field is accompanied by a change of the plasma fluid rotation. The differential rotation frequency between the DED field and the plasma plays an important role in the process of the excitation of tearing modes. The momentum input from the rotating DED field to the plasma is interpreted by both a ponderomotive force at the rational surface and a radial electric field modified by an edge ergodization.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.97.085003DOI Listing

Publication Analysis

Top Keywords

field penetration
12
ded field
12
field
9
forced magnetic
8
magnetic reconnection
8
magnetic field
8
textor tokamak
8
rotating ded
8
field plasma
8
plasma
6

Similar Publications

Researchers have reported that Bacillus megaterium BM18-2 reduces Cd toxicity in Hybrid Pennisetum, but understanding the interaction between plants and associated endophytes is crucial for understanding phytoremediation strategies under heavy metal stress. The current study aims to monitor the colonization patterns of GFP-labeled endophytic bacteria BM18-2 on Hybrid Pennisetum grass. Additionally, it will monitor Cd's effect on plant bacterial colonization.

View Article and Find Full Text PDF

Transferrin Modified Gold Nanoclusters-Based Biosensing Nanoplatform for High-Precision Multimodal Bioimaging of Tumor Cells.

Anal Chem

January 2025

Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.

Bioimaging technology has been broadly used in biomedicine, and the growth of multimodal imaging technology based on synergistic advantages can overcome the shortcomings of traditional single-modal bioimaging methods and attain high specificity and sensitivity in the fields of bioimaging and biosensing. The analysis of low-abundance microRNAs (miRNAs) in complex organisms is of high importance for early-stage diagnosis and clinical treatment of tumors. In our current study, a biosensing nanoplatform based on Tf-AuNCs and MnO nanosheets was developed for multimodal imaging of tumor cells.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the most prevalent cause of dementia accounting for an estimated 60% to 80% of cases. Despite advances in the research field, developing truly effective therapies for AD symptoms remains a major challenge. Sweet almond contain nutrients that have the potential of combating age-related brain dysfunction, by improving learning, memory and neurocognitive performance.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Vanderbilt University Medical Center, Nashville, TN, USA.

Background: We report the case of a 79-year-old woman with Alzheimer's disease who enrolled in a clinical study of lecanemab. After the third, biweekly infusion she suffered a seizure followed by aphasia and progressive encephalopathy. Magnetic resonance imaging revealed multifocal cerebral edema and an increased burden of cerebral microhemorrhages compared to pre-trial imaging.

View Article and Find Full Text PDF

The Effects of Moderate to High Static Magnetic Fields on Pancreatic Damage.

J Magn Reson Imaging

January 2025

High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.

Background: Pancreatic damage is a common digestive system disease with no specific drugs. Static magnetic field (SMF), the key component of magnetic resonance imaging (MRI), has demonstrated prominent effects in various disease models.

Purpose: To study the effects of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!