Optimal entanglement criterion for mixed quantum states.

Phys Rev Lett

Physikalisches Institut, Universität Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany.

Published: August 2006

We develop a strong and computationally simple entanglement criterion. The criterion is based on an elementary positive map Phi which operates on state spaces with even dimension N > or = 4. It is shown that Phi detects many entangled states with a positive partial transposition (PPT) and that it leads to a class of optimal entanglement witnesses. This implies that there are no other witnesses which can detect more entangled PPT states. The map Phi yields a systematic method for the explicit construction of high-dimensional manifolds of bound entangled states.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.97.080501DOI Listing

Publication Analysis

Top Keywords

optimal entanglement
8
entanglement criterion
8
map phi
8
entangled states
8
criterion mixed
4
mixed quantum
4
states
4
quantum states
4
states develop
4
develop strong
4

Similar Publications

A novel domain feature disentanglement method for multi-target cross-domain mechanical fault diagnosis.

ISA Trans

January 2025

State Key Laboratory of Computer-Aided Design and Computer Graphics, Zhejiang University, Hangzhou, 310027, China; Key Laboratory of Intelligent Rescue Equipment for Collapse Accidents, Ministry of Emergency Management, Hangzhou, 310030, China; Zhejiang Laboratory, Hangzhou, 311121, China. Electronic address:

Existing cross-domain mechanical fault diagnosis methods primarily achieve feature alignment by directly optimizing interdomain and category distances. However, this approach can be computationally expensive in multi-target scenarios or fail due to conflicting objectives, leading to decreased diagnostic performance. To avoid these issues, this paper introduces a novel method called domain feature disentanglement.

View Article and Find Full Text PDF

FPGA acceleration of tensor network computing for quantum spin models.

Rev Sci Instrum

January 2025

Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.

Increasing the degree of freedom for quantum entanglement within tensor networks can enhance the depiction of the essence in many-body systems. However, this enhancement comes with a significant increase in computational complexity and critical slowing down, which drastically increases time consumption. This work converts a quantum tensor network algorithm into a classical circuit on the Field Programmable Gate Arrays (FPGAs) and arranges the computing unit with a dense parallel design, efficiently optimizing the time consumption.

View Article and Find Full Text PDF

Intrinsic Mechanical Effects on the Activation of Carbon Catalysts.

J Am Chem Soc

January 2025

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.

The mechanical effects on carbon-based metal-free catalysts (C-MFCs) have rarely been explored, despite the global interest in C-MFCs as substitutes for noble metal catalysts. Stress is ubiquitous, whereas its dedicated study is severely restricted due to its frequent entanglement with other structural variables, such as dopants, defects, and interfaces in catalysis. Herein, we report a proof-of-concept study by establishing a platform to continuously apply strain to a highly oriented pyrolytic graphite (HOPG) lamina, simultaneously collecting electrochemical signals.

View Article and Find Full Text PDF

Organic solar cells (OSCs) have recently achieved efficiencies of >20% in single-junction unit cells owing to rapid advancements in materials and device technologies. Large-area OSCs face several challenges that adversely affect their efficiency compared to small unit cells. These challenges include increased resistance loads derived from their larger dimensions, as well as limitations related to morphology, miscibility, and crystallinity.

View Article and Find Full Text PDF

Ongoing challenges in the provision of care, driven by growing care complexity and nursing shortages, prompt us to reconsider the basis for efficient division of nursing labour. In organising nursing work, traditionally the focus has been on identifying nursing tasks that can be delegated to other less expensive and less highly educated staff, in order to make best use of scarce resources. We argue that nursing care activities are connected and intertwined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!