We observe low-field hysteretic magnetoresistance in a (Ga,Mn)As single-electron transistor which can exceed 3 orders of magnitude. The sign and size of the magnetoresistance signal are controlled by the gate voltage. Experimental data are interpreted in terms of electrochemical shifts associated with magnetization rotations. This Coulomb blockade anisotropic magnetoresistance is distinct from previously observed anisotropic magnetoresistance effects as it occurs when the anisotropy in a band structure derived parameter is comparable to an independent scale, the single-electron charging energy. Effective kinetic-exchange model calculations in (Ga,Mn)As show chemical potential anisotropies consistent with experiment and ab initio calculations in transition metal systems suggest that this generic effect persists to high temperatures in metal ferromagnets with strong spin-orbit coupling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.97.077201 | DOI Listing |
Adv Mater
January 2025
Department of Physics, University of Ulsan, Ulsan, 44619, South Korea.
Efficient magnetization control is a central issue in magnetism and spintronics. Particularly, there are increasing demands for manipulation of magnetic states in van der Waals (vdW) magnets with unconventional functionalities. However, the electrically induced phase transition between ferromagnetic-to-antiferromagnetic states without external magnetic field is yet to be demonstrated.
View Article and Find Full Text PDFSci Technol Adv Mater
January 2025
Magnetic Functional Device Group, Research Center for Magnetic and Spintronic Materials (CMSM), National Institute for Materials Science (NIMS), Tsukuba, Japan.
We demonstrate high-throughput evaluation of the half-metallicity of CoMnSi Heusler alloys by spin-integrated hard X-ray photoelectron spectroscopy (HAXPES) of composition-spread films performed with high-brilliance synchrotron radiation at NanoTerasu, which identifies the optimum composition showing the best half-metallicity. Co Mn Si composition-spread thin films for = 10-40% with a thickness of 30 nm are fabricated on MgO(100) substrates using combinatorial sputtering technique. The 2-ordering and (001)-oriented epitaxial growth of CoMnSi are confirmed by X-ray diffraction for = 18-40%.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
New unconventional compensated magnets with a p-wave spin polarization protected by a composite time-reversal translation symmetry have been proposed in the wake of altermagnets. To facilitate the experimental discovery and applications of these unconventional magnets, we construct an effective analytical model. The effective model is based on a minimal tight-binding model for unconventional p-wave magnets that clarifies the relation to other magnets with p-wave spin-polarized bands.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China.
Two-dimensional (2D) materials embedded in magnetic tunnel junctions (MTJs) provide a platform to increase the control over spin transport properties by the proximity spin-filtering effect. This could be harnessed to craft spintronic devices with low power consumption and high performance. We explore the spin transport in the 2D MTJs based on graphene, which is uniformly grown on Ni(111) substrates using the chemical vapor deposition technique.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!