Quantum phase transitions in matrix product systems.

Phys Rev Lett

Max-Planck-Institute for Quantum Optics, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany.

Published: September 2006

We investigate quantum phase transitions (QPTs) in spin chain systems characterized by local Hamiltonians with matrix product ground states. We show how to theoretically engineer such QPT points between states with predetermined properties. While some of the characteristics of these transitions are familiar, like the appearance of singularities in the thermodynamic limit, diverging correlation length, and vanishing energy gap, others differ from the standard paradigm: In particular, the ground state energy remains analytic, and the entanglement entropy of a half-chain stays finite. Examples demonstrate that these kinds of transitions can occur at the triple point of "conventional" QPTs.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.97.110403DOI Listing

Publication Analysis

Top Keywords

quantum phase
8
phase transitions
8
matrix product
8
transitions
4
transitions matrix
4
product systems
4
systems investigate
4
investigate quantum
4
transitions qpts
4
qpts spin
4

Similar Publications

Average Time-Delays for the Scattering of O Atoms from O Molecules.

J Chem Theory Comput

January 2025

Laboratoire ICB, UMR-6303 CNRS/uB, Université de Bourgogne, 9 avenue Alain Savary, 21078 Cedex Dijon, France.

We report full quantum-computed average microcanonical, initial state-specific, and canonical cumulative time-delays associated with the O + O scattering, presented as a function of total energy (in relation to an idealized molecular beam experiment) or temperature (for the properties of the gas phase in bulk conditions). We show that these quantities are well-defined and computable, with a temperature-dependent (canonical) time-delay presenting a smooth, monotonic decreasing behavior with temperature, despite an energy-dependent (microcanonical) time-delay of apparent chaotic character. We discuss differences in behavior when considering isotopic variations, O + OO and O + OO, with respect to the reference process O + OO and reveal a greater magnitude of the cumulative time-delay when genuinely reactive events can take place, in the presence of O.

View Article and Find Full Text PDF

Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation.

Pigment Cell Melanoma Res

January 2025

Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.

Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells.

View Article and Find Full Text PDF

Spin transport properties in a topological insulator sandwiched between two-dimensional magnetic layers.

Sci Rep

January 2025

Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden.

Non-trivial band topology along with magnetism leads to different novel quantum phases. When time-reversal symmetry is broken in three-dimensional topological insulators (TIs) through, e.g.

View Article and Find Full Text PDF

The linear vibronic coupling (LVC) model is an approach for approximating how a molecular Hamiltonian changes in response to small changes in molecular geometry. The LVC framework thus has the ability to approximate molecular Hamiltonians at low computational expense but with quality approaching multiconfigurational calculations, when the change in geometry compared to the reference calculation used to parametrize it is small. Here, we show how the LVC approach can be used to project approximate spin Hamiltonians of a solvated lanthanide complex along a room-temperature molecular dynamics trajectory.

View Article and Find Full Text PDF

Purpose: BMS-986299 is a first-in-class, NOD-, LRR-, and pyrin-domain containing-3 (NLRP3) inflammasome agonist enhancing adaptive immune and T-cell memory responses.

Materials And Methods: This was a phase-I (NCT03444753) study that assessed the safety and tolerability of intra-tumoral BMS-986299 monotherapy (part 1A) and in combination (part 1B) with nivolumab, and ipilimumab in advanced solid tumors. Reported here are single-center results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!