A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Subgrid-scale modeling of helicity and energy dissipation in helical turbulence. | LitMetric

Subgrid-scale modeling of helicity and energy dissipation in helical turbulence.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Mechanical Engineering and Center for Environmental and Applied Fluid Mechanics, The Johns Hopkins University, Baltimore, MD 21218, USA.

Published: August 2006

The subgrid-scale (SGS) modeling of helical, isotropic turbulence in large eddy simulation is investigated by quantifying rates of helicity and energy cascade. Assuming Kolmogorov spectra, the Smagorinsky model with its traditional coefficient is shown to underestimate the helicity dissipation rate by about 40%. Several two-term helical models are proposed with the model coefficients calculated from simultaneous energy and helicity dissipation balance. The helical models are also extended to include dynamic determination of their coefficients. The models are tested a priori in isotropic steady helical turbulence. Together with the dynamic Smagorinsky model and the dynamic mixed model, they are also tested a posteriori in both decaying and steady isotropic helical turbulence by comparing results to direct numerical simulations (DNS). The a priori tests confirm that the Smagorinsky model underestimates SGS helicity dissipation, although quantitative differences with the predictions are observed due to the finite Reynolds number of the DNS. Also, in a posteriori tests improvement can be achieved for the helicity decay rate with the proposed models, compared with the Smagorinsky model. Overall, however, the effect of the new helical terms added to obtain the correct rate of global helicity dissipation is found to be quite small. Within the small differences, the various versions of the dynamic model provide the results closest to the DNS. The dynamic model's good performance in capturing mean kinetic energy dissipation at the finite Reynolds number of the simulations appears to be the most important aspect in accounting also for accurate prediction of the helicity dissipation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.74.026310DOI Listing

Publication Analysis

Top Keywords

helicity dissipation
20
smagorinsky model
16
helical turbulence
12
helicity
8
helicity energy
8
energy dissipation
8
helical models
8
finite reynolds
8
reynolds number
8
dissipation
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!