Dynamical tunneling between symmetry-related stable modes is studied in the periodically driven pendulum. We present strong evidence that the tunneling process is governed by nonlinear resonances that manifest within the regular phase-space islands on which the stable modes are localized. By means of a quantitative numerical study of the corresponding Floquet problem, we identify the trace of such resonances not only in the level splittings between near-degenerate quantum states, where they lead to prominent plateau structures, but also in overlap matrix elements of the Floquet eigenstates, which reveal characteristic sequences of avoided crossings in the Floquet spectrum. The semiclassical theory of resonance-assisted tunneling yields good overall agreement with the quantum-tunneling rates, and indicates that partial barriers within the chaos might play a prominent role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.74.026211 | DOI Listing |
Food Res Int
January 2025
State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China. Electronic address:
The acidophilic and heat-resistant characteristics of Alicyclobacillus acidoterrestris (A. acidoterrestris) pose significant challenges to fruit juice production. Traditional thermal removal methods are often ineffective against this resilient bacterium.
View Article and Find Full Text PDFMar Environ Res
December 2024
School of Oceanography, University of Washington, 1492 NE Boat St., Seattle, WA, 98105, USA; Applied Physics Laboratory, University of Washington, Box 355640, Seattle, WA, 98105, USA.
Comprehensive understanding of environmental multiple stressors on calcification in marine calcifiers remains an important topic of study, especially under ocean global change associated with multiple stressors. We explore the impact of multiple stressor on pteropod calcification in the southern Salish Sea (Washington, U.S.
View Article and Find Full Text PDFLife (Basel)
December 2024
Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China.
Background: The objective of this study was to examine the impacts of absolute cuff pressure blood flow restriction (A-BFR) training and incremental cuff pressure blood flow restriction (I-BFR) training, under equal cuff pressures, on body composition and maximal strength among untrained adults. Additionally, we aimed to compare these effects with those observed in high-load resistance training (HL-RT).
Methods: Thirty-three adults without prior professional sports or resistance training experience were recruited and randomly assigned to three groups ( = 11 per group) for an 8-week training program, held three times weekly.
Entropy (Basel)
December 2024
Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK.
Entropy management, central to the Free Energy Principle, requires a process that temporarily shifts brain activity toward states of lower or higher entropy. Metastable synchronization is a process by which a system achieves entropy fluctuations by intermittently transitioning between states of collective order and disorder. Previous work has shown that collective oscillations, similar to those recorded from the brain, emerge spontaneously from weakly stable synchronization in critically coupled oscillator systems.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.
Although the primary function of excitatory-inhibitory (E-I) homeostasis is the maintenance of mean firing rates, the conjugation of multiple homeostatic mechanisms is thought to be pivotal to ensuring edge-of-bifurcation dynamics in cortical circuits. However, computational studies on E-I homeostasis have focused solely on the plasticity of inhibition, neglecting the impact of different modes of E-I homeostasis on cortical dynamics. Therefore, we investigate how the diverse mechanisms of E-I homeostasis employed by cortical networks shape oscillations and edge-of-bifurcation dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!