Molecular weight dependence of the poly(L-lactide)/poly(D-lactide) Stereocomplex at the air-water interface.

Biomacromolecules

State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China.

Published: October 2006

The molecular weight dependence of poly(L-lactide)/poly(D-lactide) (PLLA/PDLA) stereocomplex behavior at the air-water interface was studied by surface pressure-area (pi-A) isotherms and atomic force microscopy (AFM). It was found that the compression-induced sterecomplexation of a PDLA/PLLA equimolar blend with high molecular weight (M(w) = 1 x 10(6) and 9.8 x 10(5), respectively) could occur at the air-water interface. This result is in marked contrast with the stereocomplexation of PDLA/PLLA blends in the bulk from the melt or in solutions, where the homocrystallites of either PLLA or PDLA rather than stereocomplex crystallites will be formed preferentially when the molecular weights of both polymers are higher than 1 x 10(5). Unexpectedly, the Langmuir-Blodgett behavior of the PDLA/PLLA blend with lower molecular weight (M(w) = 4 x 10(3) and 3.2 x 10(3), respectively), which should be favored in the stereocomplex, was distinct from that of other higher molecular weight blends. AFM images clearly disclosed for the first time the morphological changes of the equimolar blends of PLLA and PDLA at the air-water interface induced by increasing the surface pressure of the monolayer. Of particular note, the bilayer mechanism for the plateau in the isotherm was directly verified by the AFM height images.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm060043tDOI Listing

Publication Analysis

Top Keywords

molecular weight
20
air-water interface
16
weight dependence
8
dependence polyl-lactide/polyd-lactide
8
plla pdla
8
molecular
6
stereocomplex
4
polyl-lactide/polyd-lactide stereocomplex
4
air-water
4
stereocomplex air-water
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!