Effect of sintered grain growth on chemical ordering in binary FePt/Cu nanoparticle arrays.

J Nanosci Nanotechnol

Center for Materials for Information Technology, The University of Alabama, Tuscaloosa 35487, USA.

Published: July 2006

Recent studies have shown a strong correlation between grain growth and chemical ordering in chemically synthesized FePt nanoparticles. In order to study this effect, we have prepared a series of samples in which 3.5 nm FePt nanoparticles are dispersed in a matrix of Cu nanoparticles. The samples were annealed at 600 degrees C and at 800 degrees C. Grain size was determined by XRD Scherrer analysis and time-dependent remanent coercivity measurements were made to determine the intrinsic remanent coercivity, Hcr0. For samples annealed at 600 degrees C, Hcr0 increases strongly with grain size up to approximately 5 nm and increases weakly with additional grain growth. By contrast, after annealing at 800 degrees C, Hcr0 appears nearly independent of grain size. The results suggest that isolated 3.5 nm FePt nanoparticles can be weakly ordered when annealed at 600 degrees C and sintering is necessary for significant chemical ordering.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2006.361DOI Listing

Publication Analysis

Top Keywords

grain growth
12
chemical ordering
12
fept nanoparticles
12
annealed 600
12
600 degrees
12
grain size
12
growth chemical
8
samples annealed
8
800 degrees
8
remanent coercivity
8

Similar Publications

The mung bean ( (Linn) Wilczek.) is a major grain crop in China, but its yield is significantly impacted by weeds. However, no pre-emergence herbicides are registered for mung bean fields in the China Pesticide Information Network.

View Article and Find Full Text PDF

Genotyping Genebank Collections: Strategic Approaches and Considerations for Optimal Collection Management.

Plants (Basel)

January 2025

United States Department of Agriculture Agricultural Research Service Small Grains and Potato Germplasm Research, Aberdeen, ID 83210, USA.

The maintenance of plant germplasm and its genetic diversity is critical to preserving and making it available for food security, so this invaluable diversity is not permanently lost due to population growth and development, climate change, or changing needs from the growers and/or the marketplace. There are numerous genebanks worldwide that serve to preserve valuable plant germplasm for humankind's future and to serve as a resource for research, breeding, and training. The United States Department of Agriculture (USDA) National Plant Germplasm System (NPGS) and the Consultative Group for International Agricultural Research (CGIAR) both have a network of plant germplasm collections scattered across varying geographical locations preserving genetic resources for the future.

View Article and Find Full Text PDF

The incorporation of rice straw (RS) and Chinese milk vetch (CMV) with reduced chemical fertilizers (CFs) is a viable solution to reduce the dependency on CF. However, limited research has been conducted to investigate the impact of CMV and RS with reduced CF on rice production. A field trial was conducted from 2018 to 2021 with six treatments: CK (no fertilizer), F100 (100% NPK fertilizer (CF)), MSF100 (100% CF+CMV and RS incorporation), MSF80 (80% CF+CMV+RS), MSF60 (60% CF+CMV+RS), and MSF40 (40% CF+CMV+RS).

View Article and Find Full Text PDF

Salt stress is an important factor affecting the growth and development of rice, and prohexadione calcium (Pro-Ca) plays an important role in alleviating rice salt stress and improving rice yield. However, there are few studies on how Pro-Ca improves rice yield under salt stress by regulating the source-sink metabolism. In this study, we used Guanghong 3 (salt-tolerant variety) and Huanghuazhan (salt-sensitive variety) as experimental materials to investigate the dynamic changes in the synthesis and partitioning of nonstructural carbohydrates among source-sink, the dynamic changes in related enzyme activities, the effects of the source-sink metabolism on yield in rice under salt stress and the effect of Pro-Ca during the filling period.

View Article and Find Full Text PDF

Salt stress is a vital environmental stress that severely limits plant growth and productivity. Prohexadione-calcium (Pro-Ca) has been extensively studied to regulate plant growth, development, and stress responses. However, the constructive role of Pro-Ca in alleviating damages and enhancing rice tillers' morph-physiological characteristics under salt stress remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!