Hollow spheres of poly(diphenylamine) (PDPA) was prepared by confining PDPA in the galleries of montmorillonite organo clay modified with organoammonium cations (MMT). At first instant, diphenylamine (DPA) was loaded into the galleries of MMT and subjected to subsequent oxidative polymerization to form PDPA. beta-naphthalene sulfonic acid (NSA) was used as medium to influence self-assembly of DPA inside the galleries of MMT. Polymerization of self assembled structure resulted hollow spheres of PDPA inside galleries of MMT. X-ray diffraction analysis (XRD), field emission transmission electron microscopy (FETEM), Fourier transform infra-red spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were used to characterize the composites. Transmission emission microscopy of the composite shows the hollow spherical morphology of PDPA. FT-IR, UV-Visible spectroscopy, conductivity measurement and X-ray photoelectron spectroscopy were used to characterize the PDPA extracted from MMT galleries. PDPA extracted from MMT galleries was found to have difference in electronic property than PDPA formed by the conventional method, due to the confinement effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2006.240 | DOI Listing |
J Colloid Interface Sci
January 2025
Departamento QUIPRE, Universidad de Cantabria, Avda. Los Castros 46 39005 Santander, Spain; Grupo de Nanomedicina, IDIVAL, Avda. Cardenal Herrera Oria s/n, 39011 Santander, Spain. Electronic address:
High-charge micas exhibit improved adsorption properties and are a promising alternative clay material for the engineered barrier in deep geological repositories. When combined with Eu cations, they serve as an in situ luminescent probe for tracking the physical-chemical changes occurring in this engineered barrier over the long term. Therefore, a better understanding of the local environment of the lanthanide is highly desirable to comprehend the specific behavior of these systems.
View Article and Find Full Text PDFJ Biophotonics
October 2024
Faculty of Science and Technology, Norwegian University of Life Sciences, Aas, Norway.
Since both top and bottom illuminations are widely used in infrared transmission measurements, in this paper, we study the effects of different illuminations on the signatures in infrared microspectroscopy. By simulating a series of dielectric samples, we show that their extinction efficiency, , remains unchanged when the direction of the incident plane wave is reversed, even though the field distributions both inside and outside of the sample may be dramatically different. We find features in that are correlated with whispering gallery modes for one beam direction and correspond to completely different field distributions for the opposite beam direction.
View Article and Find Full Text PDFJ Phys Chem Lett
August 2024
Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
Microdroplets offer unique environments that accelerate chemical reactions; however, the mechanisms behind these processes remain debated. The localization and orientation of solute molecules near the droplet surface have been proposed as factors for this acceleration. Since significant reaction acceleration has been observed for electrospray- and sonic-spray-generated aerosol droplets, the analysis of microdroplets in air has become essential.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2024
Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
ACS Appl Mater Interfaces
July 2024
School of Science, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, China.
An efficient interface and composition modification strategy is proposed to significantly increase the rate capacity and initial Coulombic efficiency (ICE) of SnO anodes via energy band structure modulation for Na-ion batteries (SIBs). The as-fabricated SnO@Bi@C material with Bi nanocrystals homogeneously dispersed on and around the SnO surface is prepared by an electrospinning method. The excellently dispersed Bi nanocrystals realize an effective interface contact with SnO and NaO, which effectively lowers the electron conduction barriers and promotes sodium-ion release and transport upon the desodiation process, increasing the rate capacity and ICE of the SnO anode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!