Phospholipase D (PLD) and phosphatidylcholine (PC) were implicated in apoptosis and cancer. However, direct evidence on the role of PLD in the cause of apoptosis remains obscure. It was recently reported that apoptosis and necrosis could be induced in the cerebellum and brainstem after focal cerebral hypoxic-ischemic (HI) injury. It was found that apoptosis could be enhanced by farnesol inhibition of PLD signal transduction. Whereas it was shown that highly invasive cancer cell line depends on PLD activity for survival when deprived of serum growth factors. Based on these reports, it is postulated that apoptosis in the cerebellum and brainstem induced after focal cerebral HI treatment may be caused by faulty PLD expression. This is consistent with a report that PLD1 activity and mRNA levels were down-regulated during apoptosis. To test this hypothesis, Northern blotting was used to examine PLD2 mRNA expression after focal cerebral HI. The results show that both PLD2 mRNA 10.8 and 3.9 kb transcripts were significantly decreased by as much as 37% in the brainstem and cerebellum areas 3 h after HI compared to the control, concur with previous report of decreasing PLD activity after ischemia. These PLD2 transcripts, however, were not significantly different from the control 3 days after HI, indicating that the decrease in PLD2 transcription after HI maybe a transient phenomenon. This is the first report to show that the loss of membrane integrity resulting from deprivation of energy and growth factors after HI could cause decrease in PLD2 transcription that promotes apoptosis. The hypothetic role of PLD2 and the mechanism leading to apoptosis remains to be further elucidated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11064-006-9171-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!