In many lakes, the most conspicuous seasonal events are the phytoplankton spring bloom and the subsequent clear-water phase, a period of low-phytoplankton biomass that is frequently caused by mesozooplankton (Daphnia) grazing. In Central European lakes, the timing of the clear-water phase is linked to large-scale climatic forcing, with warmer winters being followed by an earlier onset of the clear-water phase. Mild winters may favour an early build-up of Daphnia populations, both directly through increased surface temperatures and indirectly by reducing light limitation and enhancing algal production, all being a consequence of earlier thermal stratification. We conducted a field experiment to disentangle the separate impacts of stratification depth (affecting light supply) and temperature on the magnitude and timing of successional events in the plankton. We followed the dynamics of the phytoplankton spring bloom, the clear-water phase and the spring peak in Daphnia abundance in response to our experimental manipulations. Deeper mixing delayed the timing of all spring seasonal events and reduced the magnitudes of the phytoplankton bloom and the subsequent Daphnia peak. Colder temperatures retarded the timing of the clear-water phase and the subsequent Daphnia peak, whereas the timing of the phytoplankton peak was unrelated to temperature. Most effects of mixing depth (light) and temperature manipulations were independent, effects of mixing depth being more prevalent than effects of temperature. Because mixing depth governs both the light climate and the temperature regime in the mixed surface layer, we propose that climate-driven changes in the timing and depth of water column stratification may have far-reaching consequences for plankton dynamics and should receive increased attention.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-006-0550-9DOI Listing

Publication Analysis

Top Keywords

clear-water phase
20
mixing depth
16
temperature mixing
8
seasonal events
8
phytoplankton spring
8
spring bloom
8
bloom subsequent
8
timing clear-water
8
depth light
8
plankton dynamics
8

Similar Publications

Coplanar Dimeric Acceptors with Bathochromic Absorption and Torsion-Free Backbones through Precise Fluorination Enabling Efficient Organic Photovoltaics with 18.63% Efficiency.

Adv Sci (Weinh)

January 2025

Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529199, P. R. China.

Giant dimeric acceptors (GDAs), a sub-type of acceptor materials for organic solar cells (OSCs), have garnered much attention due to the synergistic advantages of their monomeric and polymeric acceptors, forming a well-defined molecular structure with a giant molecular weight for high efficiency and stability. In this study, for the first time, two new GDAs, DYF-V and DY2F-V are designed and synthesized for OSC operation, by connecting one vinylene linker with the mono-/di-fluorinated end group on two Y-series monomers, respectively. After fluorination, both DYF-V and DY2F-V exhibit bathochromic absorption and denser packing modes due to the stronger intramolecular charge transfer effect and torsion-free backbones.

View Article and Find Full Text PDF

Structure and metabolic function of spatiotemporal pit mud microbiome.

Environ Microbiome

January 2025

Luzhou Laojiao Co., Ltd., Luzhou, 646000, China.

Background: Pit mud (PM) hosts diverse microbial communities, which serve as a medium to impart flavor and quality to Baijiu and exhibit long-term tolerance to ethanol and acids, resulting in a unique ecosystem. However, the ecology and metabolic functions of PM remain poorly understood, as many taxa in PM represent largely novel lineages. In this study, we used a combination of metagenomic analysis and chemical derivatization LC-MS analysis to provide a comprehensive overview of microbial community structure, metabolic function, phylogeny, horizontal gene transfer, and the relationship with carboxyl compounds in spatiotemporal PM samples.

View Article and Find Full Text PDF

A Machine Vision Perspective on Droplet-Based Microfluidics.

Adv Sci (Weinh)

January 2025

Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China.

Microfluidic droplets, with their unique properties and broad applications, are essential in in chemical, biological, and materials synthesis research. Despite the flourishing studies on artificial intelligence-accelerated microfluidics, most research efforts have focused on the upstream design phase of microfluidic systems. Generating user-desired microfluidic droplets still remains laborious, inefficient, and time-consuming.

View Article and Find Full Text PDF

Pressure-driven magnetic phase change in the CrI/BrCrI heterostructure.

Phys Chem Chem Phys

December 2024

State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China.

Vertically stacked van der Waals (vdW) heterostructures not only provide a promising platform in terms of band alignment, but also constitute fertile ground for fundamental science and attract tremendous practical interest towards their use in various device applications. Beyond most two-dimensional (2D) materials, which are intrinsically non-magnetic, CrI is a novel material with magnetism dependent on its vdW-bonded layers, promising potential spintronics applications. However, for particular device applications, a heterostructure is commonly fabricated and it is necessary to examine the effect of the interface or contact atoms on the magnetic properties of the heterostructure.

View Article and Find Full Text PDF

Comprehensive effects of sediment dredging on environmental risk and bioavailability of heavy metals from the sediment of Lake Taihu, China.

J Hazard Mater

February 2025

State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China. Electronic address:

The comprehensive effects of environmental dredging on heavy metals (HM) are still uncertain. This study comprehensively evaluates the long-term effects of dredging on the environmental risk and bioavailability of HM (Cu, Ni, Zn, Pb, Cd, Cr, and As) in Lake Taihu, China, by comparing simulated dredged treated (D) and undredged (UD) sediment cores under in-situ conditions for one year. Threshold effect level (TEL), geological accumulation index (I), potential ecological risk index (RI), and ratios of secondary phase and primary phase (RSP) methods were used to assess the environmental risk of sediment HM; and the diffusive gradient in thin-films (DGT) technique was applied to assess the bioavailability of sediment HM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!