A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interspecific variation in beeswax as a biological construction material. | LitMetric

Interspecific variation in beeswax as a biological construction material.

J Exp Biol

Department of Ecology and Evolutionary Biology and Institute for Behavioral Genetics, University of Colorado at Boulder, Campus Box 427, Boulder, CO 80309-0427, USA.

Published: October 2006

Beeswax is a multicomponent material used by bees in the genus Apis to house larvae and store honey and pollen. We characterized the mechanical properties of waxes from four honeybee species: Apis mellifera L., Apis andreniformis L., Apis dorsata L. and two subspecies of Apis cerana L. In order to isolate the material effects from the architectural properties of nest comb, we formed raw wax in to right, circular cylindrical samples, and compressed them in an electromechanical tensometer. From the resulting stress-strain curves, values for yield stress, yield strain, stress and strain at the proportional limit, stiffness, and resilience were obtained. Apis dorsata wax was stiffer and had a higher yield stress and stress at the proportional limit than all of the other waxes. The waxes of A. cerana and A. mellifera had intermediate strength and stiffness, and A. andreniformis wax was the least strong, stiff and resilient. All of the waxes had similar strain values at the proportional limit and yield point. The observed differences in wax mechanical properties correlate with the nesting ecology of these species. A. mellifera and A. cerana nest in cavities that protect the nest from environmental stresses, whereas the species with the strongest and stiffest wax, A. dorsata, constructs relatively heavy nests attached to branches of tall trees, exposing them to substantially greater mechanical forces. The wax of A. andreniformis was the least strong, stiff and resilient, and their nests have low masses relative to other species in the genus and, although not built in cavities, are constructed on lower, often shielded branches that can absorb the forces of wind and rain.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.02472DOI Listing

Publication Analysis

Top Keywords

proportional limit
12
mechanical properties
8
apis dorsata
8
yield stress
8
strong stiff
8
stiff resilient
8
apis
6
wax
6
interspecific variation
4
variation beeswax
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!