Unlabelled: Although the pathophysiology underlying the pain of fibromyalgia syndrome (FMS) remains unknown, a variety of clinical and investigational findings suggests a dysregulation of dopaminergic neurotransmission. We therefore investigated presynaptic dopaminergic function in 6 female FMS patients in comparison to 8 age- and gender-matched controls as assessed by positron emission tomography with 6-[(18)F]fluoro-L-DOPA as a tracer. Semiquantitative analysis revealed reductions in 6-[(18)F]fluoro-L-DOPA uptake in several brain regions, indicating a disruption of presynaptic dopamine activity wherein dopamine plays a putative role in natural analgesia. Although the small sample size makes these findings preliminary, it appears that FMS might be characterized by a disruption of dopaminergic neurotransmission.

Perspective: An association between FMS and reduced dopamine metabolism within the pain neuromatrix provides important insights into the pathophysiology of this mysterious disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpain.2006.05.014DOI Listing

Publication Analysis

Top Keywords

presynaptic dopamine
8
dopamine activity
8
fibromyalgia syndrome
8
positron emission
8
emission tomography
8
reduced presynaptic
4
dopamine
4
activity fibromyalgia
4
syndrome demonstrated
4
demonstrated positron
4

Similar Publications

Depression is one of the most common non-motor symptoms in Parkinson's disease (PD) and the hyperactivity of the lateral habenula (LHb) may contribute to depression. The present study was performed to investigate the effects and mechanisms of group I metabotropic glutamate receptors (mGluRs) in the LHb on PD-related depressive-like behaviors. Unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) were used to establish the PD rat model.

View Article and Find Full Text PDF

Background: Central synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), involve alpha-synuclein accumulation and dopaminergic cell loss in the substantia nigra (SN) and locus coeruleus (LC). Pure autonomic failure (PAF), a peripheral synucleinopathy, often precedes central synucleinopathies.

Objectives: To assess early brain involvement in PAF using neuromelanin-sensitive magnetic resonance imaging (NM-MRI) and fluorodopa-positron emission tomography (FDOPA-PET), and to determine whether PAF patients with a high likelihood ratio (LR) for conversion to a central synucleinopathy exhibit reduced NM-MRI contrast in the LC and SN compared with controls and low-LR patients.

View Article and Find Full Text PDF

The dysfunction of dopaminergic (DA) neurons is central to Parkinson's disease. Distinct synaptic vesicle (SV) populations, differing in neurotransmitter content (dopamine vs. glutamate), may vary due to differences in trafficking and exocytosis.

View Article and Find Full Text PDF

Lumateperone is a novel antipsychotic recently approved for the treatment of schizophrenia. Its unique pharmacological profile includes modulation of serotonergic, dopaminergic, and glutamatergic neurotransmission, differentiating it from other second-generation antipsychotics. This paper explores the pharmacological features and clinical potential of lumateperone across neuropsychiatric conditions.

View Article and Find Full Text PDF

DOPAC as a modulator of α-Synuclein and E46K interactions with membrane: Insights into binding dynamics.

Int J Biol Macromol

January 2025

Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy. Electronic address:

α-Synuclein (Syn) is an intrinsically disordered protein, abundant in presynaptic neurons. It is a constituent of the Lewis Body inclusions as amyloid fibrils, in Parkinson's disease patients. It populates an ensemble of conformations and floats between the free random coil and the membrane-bound α-helical species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!