Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Drug-induced vomiting (emesis) is a major concern in patient care and a significant hurdle in the development of novel therapeutics. With respect to the latter, rodents, such as the rat and mouse, are typically used in efficacy and safety studies; however, drug-induced emesis cannot be readily observed in these species due to the lack of an emetic reflex. It is known that emesis can be triggered by neural activity in brain regions including area postrema (AP) and nucleus tractus solitarius (NTS). In this study, using pharmacological magnetic resonance imaging (phMRI) and a blood-pool contrast agent, we imaged the hemodynamic consequences of brain activity in awake rats initiated by the administration of compounds (apomorphine 0.1, 0.3 micromol/kg i.v. and ABT-594 0.03, 0.1, 0.3 micromol/kg i.v.) that elicit emesis in other species. Regional drug-induced relative cerebral blood volume (rCBV) changes and percent activated area within the AP and NTS were calculated, in which a dose-dependent relationship was evident for both apomorphine and ABT-594. Additionally, to correlate with behavioral readouts, it was found that the activation of AP and NTS was observed at plasma concentrations consistent with those that induced emesis in ferrets for both drugs. Our data thus suggest that phMRI in awake rats may be a useful tool for predicting emetic liability of CNS-acting drugs and may provide insights into depicting the underlying emetic neural pathways in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2006.06.059 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!