Glucagon was mono-PEGylated with PEG 5000 at Lys-12 to examine the effect on conformation and physical stability during purification and freeze-drying. The model peptide glucagon is highly unstable and readily forms fibrils in solution. Secondary structure was determined by FTIR and far-UV CD and physical stability was assessed by the Thioflavin T assay. Glucagon samples were included, which underwent the same RP-HPLC purification and/or freeze-drying as glucagon-PEG 5000. After purification and freeze-drying glucagon samples showed formation of intermolecular beta-sheet by FTIR, this correlated with shorter lag-times for fibrillation in the Thioflavin T assay. Formation of intermolecular beta-sheet was less apparent for glucagon-PEG 5000 and no fibrillation was detected by Thioflavin T assay. Apparently PEGylation significantly improved the physical stability of glucagon after purification and freeze-drying, possibly by steric hindrance of peptide-peptide interactions. Alterations in the secondary structure were observed for freeze-dried and reconstituted peptide samples by liquid FTIR. The peak for alpha-helix shifted to 1664 cm(-1), which could possibly be explained by formation of 3(10)-helix. Neither 3(10)-helix nor intermolecular beta-sheet could be detected by far-UV CD, where all peptide samples showed similar spectra. In conclusion, glucagon-PEG 5000 showed a significantly improved physical stability during purification and freeze-drying compared to glucagon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2006.09.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!