Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The main goal of this paper is to review the theoretical models which can be used to describe the interactions between silica surfaces and to show that a model proposed earlier by the authors (the polarization model), which accounts concomitantly for double layer and hydration forces, can be adapted to explain recent experiments in this direction. When the water molecules near the interface were considered to have an ice-like structure, a strong coupling between the double layer and hydration forces (described by the correlation length between neighboring dipoles, lambda(m)) generates long range interactions, larger than the experimentally determined interactions between silica surfaces. Arguments are brought that a gel layer is likely to be formed on the surface of silica, which, by generating disorder in the interfacial water layers, can decrease strongly the value of lambda(m). Since the prediction of lambda(m) involves a choice for the microscopic structure of water, which is often unknown, the polarization model is also presented here as a phenomenological theory, in which lambda(m) is used as a fitting parameter. Two extreme cases are considered. In one of them, the water molecules near the interface are considered to have an ice-like structure, whereas in the other they are considered randomly distributed. In the first case, the dipole correlation length lambda(m)=14.9 Angstrom. In the second limiting case, lambda(m) can be of the order of 1 Angstrom. It is shown that, for lambda(m)=4 Angstrom, a more than qualitative agreement with the experiment could be obtained, for reasonable values of the parameters involved (e.g. surface dipole strength and density, dipole location, surface charge).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cis.2006.08.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!