Skin wounds derive therapeutic benefit from redeployment of dermal tissues, whether as split-thickness allo- and autografts or as biological dressings comprising cultured cells. However, the clinical outcome is strongly influenced by the techniques used for cell/tissue grafting and also the microbiological status of the wound. Here we report that microtopography incorporated into the surface of a novel polymeric material, derivatized with fibronectin to promote attachment and encourage motility, improved the efficiency of cell transfer onto de-epithelialized human skin ex vivo. The microtopography had two functions, first as a conduit for migrating cells to cross between the vehicle and recipient surface and second to shield adherent cells from destruction by mechanical shearing during handling and application. Quantitative analysis showed that topographic projections (columns) rather than recesses (pits) in the hydrogel surface achieved the highest efficiency of cell transfer. In order to address the crucial relevance of microbiological contamination to the success of wound grafting, the effect of iodine on several common bacterial pathogens was examined using an XTT+C(Q10) kinetic cell viability assay. Increasing concentrations of iodine initially stressed and after 0.5% v/v were subsequently bacteriocidal for Gram-negative Pseudomonas aeruginosa and Escherichia coli and Gram-positive Bacillus subtillis and Staphylococcus aureus. Slightly higher doses of iodine (approx 1-1.5% v/v) were required to kill HaCaT cells outright, but for both pro- and eukaryotes the major determinant of cytotoxicity was absolute dose rather than duration of exposure. Iodine delivered by the hydrogel at low concentration was bacteriostatic but not apparently cytotoxic to epithelial cells as measured by MTT end-point cell viability assay. Zone of inhibition studies confirmed that bacteriocidal quantities of neomycin, phenol red, and silver could also be delivered using the same hydrogel. This research suggests that grafting cell-based biological dressings to wounds using a topographically modified hydrogel dressing capable of simultaneous reducing the microbiological threat to a successful outcome may be a realistic clinical proposition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bp060192nDOI Listing

Publication Analysis

Top Keywords

biological dressings
8
efficiency cell
8
cell transfer
8
cell viability
8
viability assay
8
delivered hydrogel
8
cell
5
hydrogel
5
cells
5
microengineered surface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!