Objective: The purpose of this study was to describe the utility of oral chemiluminescent lighting (FDA-cleared ViziLite) as an adjunct to standard visual examination (SVE) to enhance visualization of mucosal lesions, particularly those "clinically suspicious" for oral pre-cancer or cancer. Subjects were considered at risk for oral cancer or pre-cancer if they have no a priori knowledge of the presence or absence of an oral lesion at the time of examination.
Methodology: Five-hundred and one consecutive consenting subjects, over 40 years of age and with a positive tobacco history, received a standard visual examination with conventional incandescent lighting, followed by chemiluminescent lighting. All lesions were recorded, and for lesions detected by both screening modalities, comparisons were made of the subjective parameters of lesion brightness, sharpness, surface texture, and relative size.
Results: A total of 410 epithelial lesions were detected in 270 subjects by standard visual examination, of which 127 were clinically "suspicious" for oral cancer and pre-cancer. Ninety-eight lesions were also visualized by chemiluminescent lighting as "aceto-white" (CL+), in addition to six lesions not previously seen by standard visual examination. Seventy-seven of the CL+ lesions (78.5%) were clinically suspicious; all "suspicious" lesions with an ulcerative component and ulcerated lesions consistent with trauma were CL+. Leukoplakias were significantly more likely to be CL+ than erythroplakias (p < 0.01). Overall, those lesions illuminated by chemiluminescent lighting appeared brighter, sharper, and smaller compared to incandescent illumination.
Conclusion: The results of this study suggest that oral chemiluminescent lighting, when used as a screening adjunct following the standard visual oral examination, provides additional visual information. Leukoplakias may be more readily visualized by chemiluminescence. Studies are underway to explore the clinical significance and predictive value of oral chemiluminescent lighting.
Download full-text PDF |
Source |
---|
Nat Commun
January 2025
Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
The fabrications of circularly polarized luminescent (CPL) material are mainly based on the chemical and physical strategies. Controlled biosynthesis of CPL-active materials is beset with difficulties due to the lack of bioactive luminescent precursors and bio-reactors. Enlighted by microbe-assisted asymmetric biosynthesis, herein, we show the in situ bacterial fermentation of Komagataeibacter sucrofermentants to fabricate a series of bacterial cellulosic biofilms with CPL of green, orange, red, and near-infrared colors.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, P.R. China.
Phosphors with broadband green emission are highly desirable for the construction of high-color-rendering warm-white light-emitting diode (LED) devices toward healthy solid-state lighting applications. However, most of the reported green phosphors are subject to an undesirable emission bandwidth and low quantum efficiency. Here, a highly efficient broadband green-emitting garnet phosphor, CaLuScAlSiO:Ce (CLSASO:Ce), is successfully synthesized and investigated in detail.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
A one-step hydrothermal method was applied to prepare carbon dots (CDs) with superior fluorescence properties using chitosan as a carbon source. The as-prepared carbon dots were then grafted onto a sodium alginate-gelatin hydrogel film to form a fluorescent hydrogel film (FHGF), emitting at 450 nm under excitation of 350 nm light. In comparison to the CDs, the fluorescence intensity of this film was maintained over 90.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India.
Dy/Tb co-doped glasses have drawn profound attention for their potential in solid state lighting due to their unique luminescence properties. This research highlights the effect of compositional variation on structural and optical characteristics of Dy/Tb co-doped phospho-tellurite glasses through a comprehensive analysis involving X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and photoluminescence (PL) studies. XRD and FTIR spectroscopy are conducted to characterize the glass matrix and confirm its structural integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!