After lactation, the mouse mammary gland undergoes apoptosis and tissue remodelling as the gland reverts to its prepregnant state. This complex change was investigated using 2-DE. An integrated database was produced from lactation and involution proteomes. Forty-four molecular cluster indexes (MCIs) that showed altered expression from lactation to involution were selected for MS analysis. Of these, 32 gave protein annotations, 18 of which were unequivocal proteins. Selected proteins were then studied across all of development, including pregnancy, using data integrated from another proteome database. Two proteins, the RNA polymerase B transcription factor 3 (BTF3) and the minichromosome maintenance protein 3 (MCM3), although initially selected on the basis of the lactation/involution criteria, had expression profiles that indicated an additional role in mammary development and were further analysed. BTF3, a transcription factor previously not described in the mammary gland, was up-regulated strongly in pregnancy, indicating an involvement in alveolar growth. MCM3's expression was greatest in pregnancy and late involution, decreasing through lactation. Immunohistochemistry localised MCM3 to the mammary epithelium, where a greater proportion of cells stained than for the proliferation marker Ki67. MCM3 expression during lactation may identify cells that are licensed to repopulate the gland during cell loss in lactation and following involution.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200600202DOI Listing

Publication Analysis

Top Keywords

mammary gland
12
lactation involution
12
mouse mammary
8
mammary development
8
expression lactation
8
transcription factor
8
mammary
6
lactation
6
gland
5
proteomic analysis
4

Similar Publications

Tissue microenvironments are extremely complex and heterogeneous. It is challenging to study metabolic interaction between the different cell types in a tissue with the techniques that are currently available. Here we describe a multimodal imaging pipeline that allows cell type identification and nanoscale tracing of stable isotope-labeled compounds.

View Article and Find Full Text PDF

Background: Immunoglobulin A (IgA) plays a crucial role in the maturation the neonatal mucosal barrier. The accumulation of IgA antibody-secreting cells (ASCs) in the lactating mammary gland facilitates the secretion of IgA antibodies into milk, which are then passively to the suckling newborn, providing transient immune protection against gastrointestinal pathogens. Physiologically, full-term infants are unable to produce IgA, required for mucosal barrier maturation for at least 10 days after birth.

View Article and Find Full Text PDF

Mammary glands development is influenced by endocrine signaling, which remodels epithelial and stromal compartments. Reactive stroma phenotype is observed when stromal disturbances occur, leading to changes in extracellular matrix composition and occurrence of reactive cell types. One of the triggers of these alterations is endocrine-disrupting chemical exposure, such as bisphenol A (BPA).

View Article and Find Full Text PDF

Improving mammary gland epithelial cells proliferation through nutrition is an important approach for enhancing sow milk production and piglet growth. An intermediate metabolite of valine, 3-hydroxyisobutyrate (3-HIB), regulates cellular lipid metabolism. In the present study, we investigated the effects of 3-HIB on porcine mammary gland epithelial cells proliferation and lipid metabolism.

View Article and Find Full Text PDF

Bovine mastitis, a prevalent disease in dairy farms, exerts a profound negative influence on both the health and productivity of dairy cattle, leading to substantial economic losses for the dairy industry. The disease is associated with different bacterial agents, primarily Gram-positive cocci (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!