The distribution of vestibular efferent neurons projecting to the saccule and efferent neurons transmitting axons to the acoustic nerve (cochlear efferent neurons) has been studied in guinea pig by comparison using the method of retrograde axonal transport of horseradish peroxidase. The saccular efferent neurons are revealed bilaterally in the subendymal granular fundus of the fourth ventricle of the brain and more laterally of the facial nerve genu, ipsilaterally in the small-celled reticular nucleus as well as in nuclei of the supraolivary complex: nucleus of lateral oliva and lateral nucleus of the trapezoid body. The cochlear efferent neurons are localized ipsilaterally in the reticular caudal nucleus of the bridge in the anteroventral cochlear nucleus and in nuclei of lateral and medial olivae. In the medial nucleus of the trapezoid body such neurons are found contralaterally. Thus, the regions of the vestibular saccular efferent neurons are partially overlapped with such of the cochlear efferent units. Possible participation of the vestibular efferent neurons of the saccule in the mechanism of the acoustic perception is discussed.
Download full-text PDF |
Source |
---|
Life Sci Alliance
April 2025
Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
Protein aggregates in motoneurons, a pathological hallmark of amyotrophic lateral sclerosis, have been suggested to play a key pathogenetic role. ALS8, characterized by ER-associated inclusions, is caused by a heterozygous mutation in VAPB, which acts at multiple membrane contact sites between the ER and almost all other organelles. The link between protein aggregation and cellular dysfunction is unclear.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain.
The ubiquitin proteasome system (UPS) is implicated in protein homeostasis. One of the proteins involved in this system is HERC1 E3 ubiquitin ligase, which was associated with several processes including the normal development and neurotransmission at the neuromuscular junction (NMJ), autophagy in projection neurons, myelination of the peripheral nervous system, among others. The tambaleante (tbl) mouse model carries the spontaneous mutation Gly483Glu substitution in the HERC1 E3 protein.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neurobiology, Harvard Medical School, Boston, MA 02115.
The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84321-5600, USA.
Zika virus (ZIKV) causes a variety of peripheral and central nervous system complications leading to neurological symptoms such as limb weakness. We used a mouse model to identify candidate genes potentially involved in causation or recovery from ZIKV-induced acute flaccid paralysis. Using Zikv and Chat chromogenic and fluorescence in situ RNA hybridization, electron microscopy, immunohistochemistry, and ZIKV RT-qPCR, we determined that some paralyzed mice had infected motor neurons, but motor neurons are not reduced in number and the infection was not present in all paralyzed mice; hence infection of motor neurons were not strongly correlated with paralysis.
View Article and Find Full Text PDFExp Brain Res
January 2025
Dept. of Neurosurgery, Upstate Medical University, 750 E. Adams St, Syracuse, NY, 13210, USA.
Transcranial magnetic stimulation (TMS) has been used for many years to study the pathophysiology of amyotrophic lateral sclerosis (ALS). Based on single- or dual-pulse TMS and EMG and/or single motor unit (MU) recordings, many groups have described a loss of central inhibition as an early marker of ALS dysfunction, reflecting a state of cortical 'hyperexcitability'. This conclusion is not without its detractors, however, leading us to reexamine this issue using 4-pulse TMS, shown previously to be more effective for testing central motor pathway functional integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!