The microbiological characteristics associated with disease-suppressive peats are unclear. We used a bioassay for Pythium sylvaticum-induced damping-off of cress seedlings to identify conducive and suppressive peats. Microbial activity in unconditioned peats was negatively correlated with the counts of P. sylvaticum at the end of the bioassay. Denaturing gradient gel electrophoresis (DGGE) profiling and clone library analyses of small-subunit rRNA gene sequences from two suppressive and two conducive peats differed in the bacterial profiles generated and the diversity of sequence populations. There were also significant differences between bacterial sequence populations from suppressive and conducive peats. The frequencies of a number of microbial groups, including the Rhizobium-Agrobacterium group (specifically sequences similar to those for the genera Ochrobactrum and Zoogloea) and the Acidobacteria, increased specifically in the suppressive peats, although no single bacterial group was associated with disease suppression. Fungal DGGE profiles varied little over the course of the bioassay; however, two bands associated specifically with suppressive samples were detected. Sequences from these bands corresponded to Basidiomycete yeast genera. Although the DGGE profiles were similar, fungal sequence diversity also increased during the bioassay. Sequences highly similar to those of Cryptococcus increased in relative abundance during the bioassay, particularly in the suppressive samples. This study highlights the importance of using complementary approaches to molecular profiling of complex populations and provides the first report that basidiomycetous yeasts may be associated with the suppression of Pythium-induced diseases in peats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1610304PMC
http://dx.doi.org/10.1128/AEM.00313-06DOI Listing

Publication Analysis

Top Keywords

microbial activity
8
associated suppression
8
suppressive peats
8
suppressive conducive
8
conducive peats
8
sequence populations
8
dgge profiles
8
suppressive samples
8
peats
7
suppressive
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!