CREMOFAC--a database of chromatin remodeling factors.

Bioinformatics

Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.

Published: December 2006

AI Article Synopsis

  • Chromatin-remodeling is key to making DNA accessible for processes in the eukaryotic nucleus, influenced by ATP and non-ATP dependent factors.
  • A new web-database called CREMOFAC has been created to compile information on chromatin-remodeling factors from 49 different organisms, with detailed data on major mammals like humans, mice, and rats.
  • CREMOFAC serves as a unique and essential resource for researchers studying chromatin-remodeling, addressing a gap in existing databases.

Article Abstract

Motivation: Chromatin-remodeling is an important event in the eukaryotic nucleus rendering nucleosomal DNA accessible for various transaction processes. Remodeling Factors facilitate the dynamic nature of chromatin through participation of the collective action of (i) ATP and (ii) Non-ATP dependent factors. Considering the importance of these factors in eukaryotes, we have developed, CREMOFAC, a dedicated and frequently updated web-database for chromatin-remodeling factors.

Results: The database harbors factors from 49 different organisms reported in literature and facilitates a comprehensive search for them. In addition, it also provides in-depth information for the factors reported in the three widely studied mammals namely, human, mouse and rat. Further, information on literature, pathways and phylogenetic relationships has also been covered. The development of CREMOFAC as a central repository for chromatin-remodeling factors and the absence of such a pre-existing database heighten its utility thus making its presence indispensable.

Availability: http://www.jncasr.ac.in/cremofac/

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btl509DOI Listing

Publication Analysis

Top Keywords

remodeling factors
8
factors
7
cremofac--a database
4
database chromatin
4
chromatin remodeling
4
factors motivation
4
motivation chromatin-remodeling
4
chromatin-remodeling event
4
event eukaryotic
4
eukaryotic nucleus
4

Similar Publications

The underlying mechanisms of the association of bone health with depression - an experimental study.

Mol Biol Rep

January 2025

Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany.

Background: Depression constitutes a risk factor for osteoporosis, but underlying molecular and cellular mechanisms are not fully understood. MiRNAs influence gene expression and are carried by extracellular vesicles (EV), affecting cell-cell communication.

Aims: (1) Identify the difference in miRNA expression between depressed patients and healthy controls; (2) Analyze associations of these miRNAs with bone turnover markers; (3) Analyze target genes of differentially regulated miRNAs and predict associated pathways regarding depression and bone metabolism.

View Article and Find Full Text PDF

Hydration Effects Driving Network Remodeling in Hydrogels during Cyclic Loading.

ACS Macro Lett

January 2025

Materials Science and Engineering Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

In complex networks and fluids such as the extracellular matrix, the mechanical properties are substantially affected by the movement of polymers both part of and entrapped in the network. As many cells are sensitive to the mechanical remodeling of their surroundings, it is important to appreciate how entrapped polymers may inhibit or facilitate remodeling in the network. Here, we explore a molecular-level understanding of network remodeling in a complex hydrogel environment through successive compressive loading and the role that noninteracting polymers may play in a dynamic network.

View Article and Find Full Text PDF

Tissue regeneration after a wound occurs through three main overlapping and interrelated stages namely inflammatory, proliferative, and remodelling phases, respectively. The inflammatory phase is key for successful tissue reconstruction and triggers the proliferative phase. The macrophages in the non-healing wounds remain in the inflammatory loop, but their phenotypes can be changed interactions with nanofibre-based scaffolds mimicking the organisation of the native structural support of healthy tissues.

View Article and Find Full Text PDF

Effect of initial bone morphology on alveolar bone remodeling following molar extraction: A retrospective study.

J Periodontol

January 2025

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.

Background: The clinical evidence about alveolar ridge changes following molar extraction and how the alveolar bone morphology influences the ridge dimensional changes remains limited.

Methods: A total of 192 patients with 199 molar extractions were included in this retrospective study. Cone-beam computed tomography (CBCT) images of patients were obtained 0-3 months pre extraction and 6-12 months post extraction.

View Article and Find Full Text PDF

Microglial phagocytosis of haematomas is crucial for neural functional recovery following intracerebral haemorrhage (ICH), a process regulated by various factors from within and outside the central nervous system (CNS). Extracellular vesicles (EVs), significant mediators of intercellular communication, have been demonstrated to play a pivotal role in the pathogenesis and progression of CNS diseases. However, the regulatory role of endogenous EVs on the phagocytic capacity of microglia post-ICH remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!