Genes of Bacillus subtilis controlled by the alternative extracytoplasmic function family sigma factor sigmaW constitute an antibiosis regulon. Its activity is modulated by RsiW, a transmembrane anti-sigma factor that sequesters and inactivates sigmaW. Upon a stress signal, RsiW is degraded by a mechanism of regulated intramembrane proteolysis. To identify genes which influence RsiW degradation, a transposon screen with a reporter fusion of the green fluorescent protein to RsiW was performed. Among several gene loci identified, the ypdC (prsW) gene displayed a strong effect on RsiW stability. In a ypdC null mutant, induction of sigmaW-controlled genes is abolished and site-1 proteolysis of RsiW is completely blocked. Transcriptional analysis revealed that ypdC is a monocistronic gene, and the defect of sigmaW induction of the null mutant was complemented by ectopically integrated ypdC under xylose control. Orthologues of YpdC can be found in a variety of different bacteria. Its membrane topology was analysed by alkaline phosphatase fusions, revealing that YpdC contains five transmembrane segments and two larger extracytoplasmic loops. In the first loop, two invariantly conserved glutamate residues can be found. In an Escherichia coli system, the cloned ypdC is the only determinant of efficient degradation of RsiW; however, YpdC does not display plain similarities to known proteases, suggesting that it either controls the activity of site-1 proteolysis of RsiW or represents a new type of protease.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.2006.05391.xDOI Listing

Publication Analysis

Top Keywords

proteolysis rsiw
12
ypdc
9
rsiw
9
regulated intramembrane
8
intramembrane proteolysis
8
anti-sigma factor
8
bacillus subtilis
8
null mutant
8
site-1 proteolysis
8
ypdc determines
4

Similar Publications

Bacillus subtilis Intramembrane Protease RasP Activity in Escherichia coli and .

J Bacteriol

October 2017

Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA

RasP is a predicted intramembrane metalloprotease of that has been proposed to cleave the stress response anti-sigma factors RsiW and RsiV, the cell division protein FtsL, and remnant signal peptides within their transmembrane segments. To provide evidence for direct effects of RasP on putative substrates, we developed a heterologous coexpression system. Since expression of catalytically inactive RasP E21A inhibited expression of other membrane proteins in , we added extra transmembrane segments to RasP E21A, which allowed accumulation of most other membrane proteins.

View Article and Find Full Text PDF

Bacillus subtilis SigW is localized to the cell membrane and is inactivated by the tight interaction with anti-sigma RsiW under normal growth conditions. Whereas SigW is discharged from RsiW binding and thus initiates the transcription of its regulon under diverse stress conditions such as antibiotics and alkaline shock. The release and activation of SigW in response to extracytoplasmic signals is induced by the regulated intramembrane proteolysis of RsiW.

View Article and Find Full Text PDF

During growth in the environment, bacteria encounter stresses which can delay or inhibit their growth. To defend against these stresses, bacteria induce both resistance and repair mechanisms. Many bacteria regulate these resistance mechanisms using a group of alternative σ factors called extracytoplasmic function (ECF) σ factors.

View Article and Find Full Text PDF

Stress-induced degradation of the Bacillus subtilis anti-sigma factor RsiW results in the induction of genes controlled by the extracytoplasmic function sigma factor sigma(W). RsiW is cleaved by the mechanism of regulated intramembrane proteolysis at site-1 and -2 by PrsW and RasP respectively, and is then further degraded by cytoplasmic Clp peptidases. In a reconstituted Escherichia coli system, PrsW removes 40 amino acids from RsiW by cleaving between Ala168 and Ser169 of the extracytoplasmic domain, thereby generating RsiW-S1.

View Article and Find Full Text PDF

The Bacillus subtilis sigma(W) regulon is induced by different stresses that most probably affect integrity of the cell envelope. The activity of the extracytoplasmic function (ECF) sigma factor sigma(W) is modulated by the transmembrane anti-sigma factor RsiW, which undergoes stress-induced degradation in a process known as regulated intramembrane proteolysis, finally resulting in the release of sigma(W) and the transcription of sigma(W)-controlled genes. Mutations in the ecsA gene, which encodes an ATP binding cassette (ABC) of an ABC transporter of unknown function, block site-2 proteolysis of RsiW by the intramembrane cleaving protease RasP (YluC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!