First-principle computational study on the full conformational space of L-threonine diamide, the energetic stability of cis and trans isomers.

J Phys Chem A

Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, 101 College Street, Room 5-359, Toronto, Ontario, Canada M5G 1L7.

Published: October 2006

First-principle computations were carried out on the conformational space of trans and cis peptide bond isomers of HCO-Thr-NH2. Using the concept of multidimensional conformational analysis (MDCA), geometry optimizations were performed at the B3LYP/6-31G(d) level of theory, and single-point energies as well as thermodynamic functions were calculated at the G3MP2B3 level of theory for the corresponding optimized structures. Two backbone Ramachandran-type potential energy surfaces (PESs) were computed, one each for the cis and trans isomers, keeping the side chain at the fully extended orientation (chi1=chi2=anti). Similarly, two side chain PESs for the cis and trans isomers were generated for the (phi=psi=anti) orientation corresponding to approximately the betaL backbone conformation. Besides correlating the relative Gibbs free energy of the various stable conformations with the number of stabilizing hydrogen bonds, the process of trans-->cis isomerization is discussed in terms of intrinsic stabilities as measured by the computed thermodynamic functions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0680488DOI Listing

Publication Analysis

Top Keywords

cis trans
12
trans isomers
12
conformational space
8
level theory
8
thermodynamic functions
8
side chain
8
first-principle computational
4
computational study
4
study full
4
full conformational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!