Deleted in colorectal cancer (DCC) is a candidate tumor-suppressor gene located at chromosome 18q21. However, DCC gene was found to have few somatic mutations and the heterozygous mice (DCC(+/-)) showed a similar frequency of tumor formation compared with the wild-type mice (DCC(+/+)). Recently, DCC came back to the spotlight as a better understating of its function and relationship with its ligand (netrin-1) had shown that DCC may act as a conditional tumor-suppressor gene. We evaluated hypermethylation as a mechanism for DCC inactivation in head and neck squamous cell carcinoma (HNSCC). DCC promoter region hypermethylation was found in 75% of primary HNSCC. There was a significant correlation between DCC promoter region hypermethylation and DCC expression (assessed by immunohistochemistry; P = 0.021). DCC nonexpressing HNSCC cell lines JHU-O12 and JHU-O19 with baseline hypermethylation of the DCC promoter were treated with 5-aza-2'-deoxycytidine (a demethylating agent) and reexpression of DCC was noted. Transfection of DCC into DCC-negative HNSCC cell lines resulted in complete abrogation of growth in all cell lines, whereas additional cotransfection of netrin-1 resulted in rescue of DCC-mediated growth inhibition. These results suggest that DCC is a putative conditional tumor-suppressor gene that is epigenetically inactivated by promoter hypermethylation in a majority of HNSCC.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-06-1073DOI Listing

Publication Analysis

Top Keywords

tumor-suppressor gene
16
dcc
13
conditional tumor-suppressor
12
dcc promoter
12
cell lines
12
deleted colorectal
8
colorectal cancer
8
putative conditional
8
inactivated promoter
8
promoter hypermethylation
8

Similar Publications

Decoding the Molecular Enigma Behind Asbestos and Fibrous Nanomaterial-induced carcinogenesis.

J Occup Health

January 2025

Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.

Objectives: Natural fibrous mineral, asbestos, has been useful in industry for many centuries. In the 1960's, epidemiology had recognized the association between asbestos exposure and mesothelioma and the IARC designated all kinds of asbestos as Group 1 in 1987. However, various scientific enigmas remained regarding the molecular mechanisms of asbestos-induced mesothelial carcinogenesis.

View Article and Find Full Text PDF

Alu-Sc-mediated exonization generated a mitochondrial LKB1 gene variant found only in higher order primates.

Sci Rep

January 2025

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore.

The tumor suppressor LKB1/STK11 plays important roles in regulating cellular metabolism and stress responses and its mutations are associated with various cancers. We recently identified a novel exon 1b within intron 1 of human LKB1/STK11, which generates an alternatively spliced, mitochondria-targeting LKB1 isoform important for regulating mitochondrial oxidative stress. Here we examined the formation of this novel exon 1b and uncovered its relatively late emergence during evolution.

View Article and Find Full Text PDF

KAT2B inhibits proliferation and invasion via inactivating TGF-β/Smad3 pathway-medicated autophagy and EMT in epithelial ovarian cancer.

Sci Rep

January 2025

Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.

Lysine acetyltransferase 2B (KAT2B) plays a crucial role in epigenetic regulation and tumor pathogenesis. Our study investigates KAT2B's function in epithelial ovarian cancer (EOC) using in vivo and in vitro methods. Immunohistochemistry showed the KAT2B expression in EOC tissues.

View Article and Find Full Text PDF

Absent in melanoma 2: a potent suppressor of retinal pigment epithelial-mesenchymal transition and experimental proliferative vitreoretinopathy.

Cell Death Dis

January 2025

Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear.

View Article and Find Full Text PDF

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!