Combination chemotherapy has been at the forefront of cancer treatment for over 40 years. However, the rationale for selecting drug combinations and the process used to demonstrate clinical effectiveness has primarily followed trial and error methodology. Typically, the selection and assessment of combined drug therapies has been based on the effectiveness of each agent as monotherapy in treating the neoplasm and avoiding overlapping toxicities, followed by clinical trials to establish dose scheduling, toxicity, and efficacy. Unfortunately, this scheme is inefficient in terms of the time required to complete and revise these clinical trials based on the outcome to optimize the drug combination. A more rational approach for the development of combination oncology products should consider (i) in vitro assays for assessing therapeutic effects of drug combinations (antagonistic, additive or synergistic interactions) when added simultaneously; (ii) methods for measuring these interactions in vivo; (iii) the importance of understanding pharmacokinetic and biodistribution parameters when using drug combinations; (iv) the need to assess pathways known to contribute to cancer cell survival as well as metastasis; and (iv) the need to assess the fate of different cell populations (cancer and stroma) contributing to the development of cancer. Therefore, the goal of this article is to provide a road map for the preclinical development of drug combination products that will have improved therapeutic activity and a high likelihood of providing beneficial therapeutic outcomes in patients with aggressive cancers with a specific focus on patients with breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.2174/156800906778194586DOI Listing

Publication Analysis

Top Keywords

drug combinations
16
clinical trials
8
drug combination
8
drug
7
cancer
5
development
4
development assessment
4
assessment conventional
4
conventional targeted
4
targeted drug
4

Similar Publications

Background: Developing drugs for treating Alzheimer's disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies.

Method: To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates RESULT: Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase 2/3 clinical trials.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Critical Path for Alzheimer's Disease (CPAD) Consortium, Critical Path institute, Tucson, AZ, USA.

Background: To help improve the Alzheimer's disease (AD) therapeutics research and development process, the Critical Path for Alzheimer's Disease (CPAD) Consortium at the Critical Path Institute (C-Path) provides a neutral framework for the drug development industry, regulatory agencies, academia, and patient advocacy organizations to collaborate. CPAD's extensive track record of developing regulatory-grade quantitative drug development tools motivates sponsors to share patient-level data and neuroimages from clinical trials. CPAD leverages these data and uses C-Path's core competencies in data management and standardization, quantitative modeling, and regulatory science to develop tools that help de-risk decision making in AD drug development.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

ProMIS Neurosciences, Toronto, ON, Canada.

Background: A large body of evidence now indicates that the most pathogenic species of Aß in Alzheimer's disease (AD) consist of soluble toxic oligomers (AßO) as opposed to insoluble fibrils and monomers. Using our computational platform, we identified 4 different AßO-restricted conformational B cell epitopes (300, 301, 303, 305) that were tested as vaccines for their ability to induce an antibody response that selectively targets toxic AßO, without inducing potentially detrimental B or T cell responses against plaque or normal Aß. A novel ex vivo approach was then used to select an optimal vaccine configuration amongst the 15 possible combinations of the 4 epitopes to provide maximal binding to a toxic oligomer-enriched low molecular weight (LMW) fraction of soluble AD brain extracts.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Merck & Co., Inc., Rahway, NJ, USA.

Background: Recent anti-amyloid mAb trial results demonstrate slowing of Alzheimer's disease progression, but to date do not fully halt or reverse this progression. Optimization of anti-amyloid therapy (timing and duration of intervention, modality, combinations, biomarker guidance) is limited by incomplete understanding of the disease, such as relationship between amyloid and tau pathways. Mechanistic Alzheimer's progression modeling investigated how amyloid and tau pathologies are connected in driving progression.

View Article and Find Full Text PDF

Purpose: The study aimed to investigate the pharmacokinetics and bioequivalence of coformulations of valsartan and amlodipine in healthy Chinese subjects under both fasting and fed conditions.

Methods: The research was conducted under both fasting and fed studies and employed a single-center, randomized, open-label, single-dose, three-period design with partial-repeat and crossover elements. A total of 71 healthy Chinese adult participants were included under fasting (n = 36) and fed (n = 35) conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!