Objectives: To determine if novel methods establishing patterns in EEG-EMG coupling can infer subcortical influences on the motor cortex, and the relationship between these subcortical rhythms and bradykinesia.
Background: Previous work has suggested that bradykinesia may be a result of inappropriate oscillatory drive to the muscles. Typically, the signal processing method of coherence is used to infer coupling between a single channel of EEG and a single channel of rectified EMG, which demonstrates 2 peaks during sustained contraction: one, approximately 10 Hz, which is pathologically increased in PD, and a approximately 30 Hz peak which is decreased in PD, and influenced by pharmacological manipulation of GABAA receptors in normal subjects.
Materials And Methods: We employed a novel multiperiodic squeezing paradigm which also required simultaneous movements. Seven PD subjects (on and off L-Dopa) and five normal subjects were recruited. Extent of bradykinesia was inferred by reduced relative performance of the higher frequencies of the squeezing paradigm and UPDRS scores. We employed Independent Component Analysis (ICA) and Empirical Mode Decomposition (EMD) to determine EEG/EMG coupling.
Results: Corticomuscular coupling was detected during the continually changing force levels. Different components included those over the primary motor cortex (ipsilaterally and contralaterally) and over the midline. Subjects with greater bradykinesia had a tendency towards increased approximately 10 Hz coupling and reduced approximately 30 Hz coupling that was erratically reversed with L-dopa.
Conclusions: These results suggest that lower approximately 10 Hz peak may represent pathological oscillations within the basal ganglia which may be a contributing factor to bradykinesia in PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-211-45295-0_7 | DOI Listing |
Exp Neurol
January 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China. Electronic address:
Depression is one of the most common non-motor symptoms in Parkinson's disease (PD) and the hyperactivity of the lateral habenula (LHb) may contribute to depression. The present study was performed to investigate the effects and mechanisms of group I metabotropic glutamate receptors (mGluRs) in the LHb on PD-related depressive-like behaviors. Unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) were used to establish the PD rat model.
View Article and Find Full Text PDFNeurosci Res
January 2025
Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan.
The primary motor cortex (M1) is believed to be a cortical center for the execution of limb movements. Although M1 neurons mainly project to the spinal cord on the contralateral side, some M1 neurons project to the ipsilateral side via the uncrossed corticospinal pathway. Moreover, some M1 neurons are activated during ipsilateral forelimb movements.
View Article and Find Full Text PDFPharmacol Res
January 2025
Center for Brain Research, Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria. Electronic address:
α6-containing GABA receptors (α6GABARs) are strongly expressed in cerebellar granule cells and are of central importance for cerebellar functions. The cerebellum not only is involved in regulation of motor activity, but also in regulation of thought, cognition, emotion, language, and social behavior. Activation of α6GABARs enhances the precision of sensory inputs, enables rapid and coordinated movement and adequate responses to the environment, and protects the brain from information overflow.
View Article and Find Full Text PDFCell Rep
January 2025
Lendület Thalamus Research Group, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary. Electronic address:
Movement and locomotion are controlled by large neuronal circuits like the cortex-basal ganglia (BG)-thalamus loop. Besides the inhibitory thalamic output, the BG directly control movement via specialized connections with the brainstem. Whether other parallel loops with similar logic exist is presently unclear.
View Article and Find Full Text PDFFront Aging Neurosci
January 2025
Department of Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Background: The perception of Subjective Visual Vertical (SVV) is crucial for postural orientation and significantly reflects an individual's postural control ability, relying on vestibular, visual, and somatic sensory inputs to assess the Earth's gravity line. The neural mechanisms and aging effects on SVV perception, however, remain unclear.
Objective: This study seeks to examine aging-related changes in SVV perception and uncover its neurological underpinnings through functional near-infrared spectroscopy (fNIRS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!