Objective: To study the effects of BMP-2 gene therapy on vascularization in repairing bone defects.
Methods: The isolated rabbit mesenchymal stem cells (rBMSC), after being transfected by adenovirus carrying BMP-2 gene (Ad-BMP-2) and seeded on xenogeneic bone scaffolds, were used to repair 1.5 cm-long radius bone defects. Five methods were in use in the experiments: Ad-BMP-2 infected rBMSC plus antigen-free bovine cancellous bone (BCB, Group A), rBMSC-BCB plus reconstructed hBMP-2 (Group B1), Ad-LacZ infected rBMSC-BCB (Group C), rBMSC-BCB (Group D) and only BCB scaffolds (Group E). After 4, 8, and 12 weeks of the operations, capillary vessel ink infusion, vascular endothelial growth factor ( VEGF) immunohistochemical staining and histological examination were conducted.
Results: After 4 weeks of the operations, usually in Group A one newly formed artery was found in every pore between the trabeculae of the BCB. The density of these intraosseous vessels was high in the periphery and decreasing towards the center of the grafts; by transmission electron microscopy, osteoblasts were always next to vascular endothelial cells and gradually developed into osteocytes with the increase of capillary vessel; VEGF expression were apparently enhanced in mesenchymocytes.
Conclusions: BMP-2 gene therapy, by up-regulating VEGF expression, indirectly induces vascularization of grafts and is of great value to the treatment of bone in union and bone defects.
Download full-text PDF |
Source |
---|
Colloids Surf B Biointerfaces
December 2024
Interdisciplinar Laboratory of Advanced Materials, LIMAV, UFPI, Teresina, PI, Brazil.
Bacterial nanocellulose (BNC) has attracted considerable attention in the field of biomedical engineering due to its potential for use in bone regeneration applications. The present study investigates the in vitro and in vivo efficacy of bacterial nanocellulose (BNC) combined with calcium and cerium ions (BNC-Ce:CaP) in bone regeneration applications. XRD analysis confirmed the presence of monetite and hydroxyapatite phases in BNC-CaP, while BNC-Ce:CaP revealed an additional brushite phase.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
October 2024
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.
Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.
Biomimetics (Basel)
December 2024
Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy.
In recent years, the demand for orthopedic implants has surged due to increased life expectancy, necessitating the need for materials that better mimic the biomechanical properties of human bone. Traditional metal implants, despite their mechanical superiority and biocompatibility, often face challenges such as mismatched elastic modulus and ion release, leading to complications and implant failures. Polyetheretherketone (PEEK), a semi-crystalline polymer with an aromatic backbone, presents a promising alternative due to its adjustable elastic modulus and compatibility with bone tissue.
View Article and Find Full Text PDFMed Mol Morphol
December 2024
Graduate School, Tianjin Medical University, Tianjin, 300070, China.
Ankylosing spondylitis (AS) is a chronic inflammatory disease involving the spine and bone joints, which is characterized by hyperosteogeny, ossification of ligaments, and ankylosis. Quercetin is a natural polyphenolic compound with various biological activities such as antioxidant, anti-inflammatory, and anti-tumor. It was to explore the effect of quercetin on AS ossification and its molecular mechanism.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China. Electronic address:
Persistent bleeding and limited repair capacity greatly threaten patients with bone destruction. Designing inorganic-organic biomimetic scaffolds with quick hemostasis and osteogenesis functions will solve this problem. A novel degradable and naringin (NG) loaded porous scaffold (SCB-N) based on APTES-modified bioactive glass (ABG), carboxymethyl chitosan and silk fibroin is developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!