Krüppel-like factor 4 (KLF4; also known as gut-enriched Krüppel-like factor or GKLF) is known to exhibit checkpoint function during the G1/S and G2/M transitions of the cell cycle. The mechanism by which KLF4 exerts these effects is not fully established. Here we investigated the expression profile of KLF4 in an inducible system over a time course of 24 h. Using oligonucleotide microarrays, we determined that the fold changes relative to control in expression levels of KLF4 exhibited a time-dependent increase from 3- to 20-fold between 4 and 24 h following KLF4 induction. During this period and among a group of 473 cell cycle regulatory genes examined, 96 were positively correlated and 86 were negatively correlated to KLF4's expression profile. Examples of upregulated cell cycle genes include those encoding tumor suppressors such as MCC and FHIT, and cell cycle inhibitors such as CHES1 and CHEK1. Examples of downregulated genes include those that promote the cell cycle including several cyclins and those required for DNA replication. Unexpectedly, several groups of genes involved in macromolecular synthesis, including protein biosynthesis, transcription, and cholesterol biosynthesis, were also significantly inhibited by KLF4. Thus, KLF4 exerts a global inhibitory effect on macromolecular biosynthesis that is beyond its established role as a cell cycle inhibitor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1626270PMC
http://dx.doi.org/10.3727/000000006783991908DOI Listing

Publication Analysis

Top Keywords

cell cycle
28
krüppel-like factor
12
global inhibitory
8
macromolecular biosynthesis
8
klf4 exerts
8
expression profile
8
genes include
8
cell
7
cycle
7
klf4
7

Similar Publications

NEAT1 regulates BMSCs aging through disruption of FGF2 nuclear transport.

Stem Cell Res Ther

January 2025

College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.

Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.

View Article and Find Full Text PDF

Inhibition of NLRP3 enhances pro-apoptotic effects of FLT3 inhibition in AML.

Cell Commun Signal

January 2025

Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria.

FLT3 mutations occur in approximately 25% of all acute myeloid leukemia (AML) patients. While several FLT3 inhibitors have received FDA approval, their use is currently limited to combination therapies with chemotherapy, as resistance occurs, and efficacy decreases when the inhibitors are used alone. Given the highly heterogeneous nature of AML, there is an urgent need for novel targeted therapies that address the disease from multiple angles.

View Article and Find Full Text PDF

ZNF169 promotes thyroid cancer progression via upregulating FBXW10.

Cell Div

January 2025

Department of Nuclear Medicine, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South university/Hunan Cancer Hospital, No. 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, P.R. China.

Background: Zinc finger protein 169 (ZNF169) plays a key role in cancer development. However, the specific role of ZNF169 in the tumorigenesis of thyroid carcinoma (THCA) remains poorly understood.

Methods: The expression of ZNF169 was measured using immunohistochemistry, RT-qPCR, and western blot.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the regulatory effects of long non-coding RNA-ANRIL on CDKN2A in the cell cycle of Kasumi-1 cells and elucidate the underlying molecular mechanisms.

Methods: ANRIL and CDKN2A expression levels were quantified using RT-qPCR in peripheral blood samples from acute myeloid leukemia (AML) patients. CDKN2A knockdown efficiency was validated via RT-qPCR, and cell cycle distribution was analyzed using flow cytometry.

View Article and Find Full Text PDF

Background: Dexrazoxane has been studied for its ability to prevent anthracycline-induced cardiac dysfunction (AICD) in several trials but its use in clinical practice remains limited. This is related to the low to moderate quality of the generated evidence, safety concerns and restricted prescribing indications. Additional randomized trials are needed before this drug can be routinely integrated into cardio-oncology clinical practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!