Macrophage migration inhibitory factor (MIF) plays an important role in inflammatory diseases. It has been reported that anti-MIF treatment and mif-gene disruption ameliorate joint inflammation in a mouse model of arthritis induced by anti-type II collagen monoclonal antibodies and lipopolysaccharide (anti-IIC mAb/LPS). In the present study, using the anti-IIC mAb/LPS system, we have analyzed arthritis in MIF-transgenic (MIFTg) and wild-type C57BL/6 (WT) mice. We found that MIFTg mice developed more severe arthritis than WT mice. The histopathological scores were significantly higher in MIFTg mice and significantly increased numbers of CD69+ T cells were detected in the spleens of these arthritic MIFTg mice, compared with WT mice. Natural killer T (NKT) cells from MIFTg mice, compared with WT mice, produced reduced amounts of IL-4 upon stimulation with agr;-galactosylceramide (alpha-GalCer). Further, repeated administration of alpha-GalCer to MIFTg mice resulted in a profound reduction of both clinical and histopathological scores of arthritis, with a significant decrease in IL-6. The present findings demonstrate that overexpression of MIF exacerbates inflammation in this arthritis model and that NKT cells play an ameliorating role upon stimulation with alpha-GalCer in the inflammatory process in MIFTg mice.
Download full-text PDF |
Source |
---|
FASEB J
November 2016
Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan; and
In human skin, keratinocytes are constantly challenged by adverse influences, such as hot and cold temperatures; however, the effects of heat on apoptosis induction in keratinocytes are not well understood. Macrophage migration inhibitory factor (MIF) is a potent cytokine that overcomes p53 function by suppressing its transcriptional activity. Here, we evaluated the effects of MIF on hyperthermia (HT)-induced apoptosis in MIF-deficient [knockout (KO)] and MIF-transgenic (Tg) mouse keratinocytes.
View Article and Find Full Text PDFPLoS One
November 2013
Department of Pediatrics, Yale University, New Haven, Connecticut, United States of America.
Background: The role and mechanism of action of MIF in hyperoxia-induced acute lung injury (HALI) in the newborn lung are not known. We hypothesized that MIF is a critical regulatory molecule in HALI in the developing lung.
Methodology: We studied newborn wild type (WT), MIF knockout (MIFKO), and MIF lung transgenic (MIFTG) mice in room air and hyperoxia exposure for 7 postnatal (PN) days.
Respir Res
February 2013
Department of Pediatrics, Yale University, New Haven, CT 06520, USA.
Background: The role and mechanism of action of MIF in bronchopulmonary dysplasia (BPD) are not known. We hypothesized that increased MIF signaling would ameliorate the pulmonary phenotype of BPD in the mouse lung.
Methods: We studied newborn wild type (WT), MIF knockout (MIFKO), and lung MIF transgenic (MIFTG) mice in room air and a BPD model, and examined the effects of administering a small molecule MIF agonist and antagonist.
Exp Eye Res
June 2008
Department of Ophthalmology and Visual Sciences, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
Acute ultraviolet (UV) exposure causes photokeratitis, and induces apoptosis in corneal cells of the eye. Macrophage migration inhibitory factor (MIF) was originally identified as a lymphokine. Today, MIF is considered as an integral component of the host antimicrobial alarm system and stress response that promotes the proinflammatory functions of immune cells.
View Article and Find Full Text PDFInt J Mol Med
November 2006
Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
Macrophage migration inhibitory factor (MIF) plays an important role in inflammatory diseases. It has been reported that anti-MIF treatment and mif-gene disruption ameliorate joint inflammation in a mouse model of arthritis induced by anti-type II collagen monoclonal antibodies and lipopolysaccharide (anti-IIC mAb/LPS). In the present study, using the anti-IIC mAb/LPS system, we have analyzed arthritis in MIF-transgenic (MIFTg) and wild-type C57BL/6 (WT) mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!