Although human epidermal growth factor receptor 2 (HER2) overexpression is implicated in tumor progression for a variety of cancer types, how it dysregulates signaling networks governing cell behavioral functions is poorly understood. To address this problem, we use quantitative mass spectrometry to analyze dynamic effects of HER2 overexpression on phosphotyrosine signaling in human mammary epithelial cells stimulated by epidermal growth factor (EGF) or heregulin (HRG). Data generated from this analysis reveal that EGF stimulation of HER2-overexpressing cells activates multiple signaling pathways to stimulate migration, whereas HRG stimulation of these cells results in amplification of a specific subset of the migration signaling network. Self-organizing map analysis of the phosphoproteomic data set permitted elucidation of network modules differentially regulated in HER2-overexpressing cells in comparison with parental cells for EGF and HRG treatment. Partial least-squares regression analysis of the same data set identified quantitative combinations of signals within the networks that strongly correlate with cell proliferation and migration measured under the same battery of conditions. Combining these modeling approaches enabled association of epidermal growth factor receptor family dimerization to activation of specific phosphorylation sites, which appear to most critically regulate proliferation and/or migration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1682017PMC
http://dx.doi.org/10.1038/msb4100094DOI Listing

Publication Analysis

Top Keywords

her2 overexpression
12
epidermal growth
12
growth factor
12
effects her2
8
signaling networks
8
networks governing
8
proliferation migration
8
factor receptor
8
her2-overexpressing cells
8
data set
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!