Stability indicating methods for determination of Donepezil Hydrochloride according to ICH guidelines.

Chem Pharm Bull (Tokyo)

Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Published: October 2006

Stability indicating assays for determination of Donepezil Hydrochloride in presence of its oxidative degradate were developed and validated. The first three are spectrophotometric methods depending on using zero order (D(0)), first order (D(1)) and second order (D(2)) spectra. The absorbance was measured at 315 nm for (D(0)) while the amplitude was measured at 332.1nm for (D(1)) and 340 nm for (D(2)) using deionized water as a solvent. Donepezil Hydrochloride (I) can be determined in the presence of up to 70% of its oxidative degradate (II) using (D(0)), 80% using (D(1)) and 90% using (D(2)). The linearity range was found to be 8-56 microg ml(-1) for (D(0)), (D(1)) and (D(2)). These methods were applied for the analysis of I in both powder and tablet form. Also, a spectrofluorimetric method depending on measuring the native fluorescence of I in deionized water using lambda excitation 226 nm and lambda emission 391 nm is suggested. The linearity range was found to be 0.32-3.20 microg ml(-1) using this method, I was determined in the presence of up to 90% of II. The proposed method was applied for the analysis of I in tablet form as well as in human plasma. The last method depends on using TLC separation of I from its oxidative degradate II and I was then determined spectrodensitometrically. The mobile phase was methanol : chloroform : 25% ammonia (16 : 64 : 0.1 by volume). The linearity range was found to be 2-15 microg/spot. This method was applied to the analysis of I in both powder and tablet form using acetonitrile as a solvent.

Download full-text PDF

Source
http://dx.doi.org/10.1248/cpb.54.1447DOI Listing

Publication Analysis

Top Keywords

donepezil hydrochloride
12
oxidative degradate
12
linearity range
12
applied analysis
12
tablet form
12
stability indicating
8
determination donepezil
8
deionized water
8
determined presence
8
microg ml-1
8

Similar Publications

Novel multipotent conjugate bearing tacrine and donepezil motifs with dual cholinergic inhibition and neuroprotective properties targeting Alzheimer's disease.

RSC Med Chem

January 2025

Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia

In this work, we developed potential multifunctional agents to combat Alzheimer's disease. According to our strategy, fragments of tacrine and donepezil were merged in a unique hybrid structure. After successfully synthesizing the compounds, they were evaluated for their dual AChE/BuChE inhibitor potential and neuroprotector response using a glutamate-induced excitotoxicity model.

View Article and Find Full Text PDF

Scope: This study aimed to assess the antioxidant, anti-inflammatory, and acetylcholinesterase activities of fruiting bodies (FB) and mycelium (M) extracts of Morchella esculenta L. collected from various regions of Pakistan. The samples included Skardu fruiting body (SKFB) and mycelia Skardu (SKM), Malam Jaba fruiting body (MJFB) and Malam Jaba mycelia (MJM), Krair Mansehra fruiting body (KMFB) and Krair Mansehra mycelia (KMM), and Thandiani fruiting body (TFB) and Thandiani mycelia (TM).

View Article and Find Full Text PDF

Evolution of Alzheimer's Disease Therapeutics: From Conventional Drugs to Medicinal Plants, Immunotherapy, Microbiotherapy and Nanotherapy.

Pharmaceutics

January 2025

Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico.

Alzheimer's disease (AD) represents an escalating global health crisis, constituting the leading cause of dementia among the elderly and profoundly impairing their quality of life. Current FDA-approved drugs, such as rivastigmine, donepezil, galantamine, and memantine, offer only modest symptomatic relief and are frequently associated with significant adverse effects. Faced with this challenge and in line with advances in the understanding of the pathophysiology of this neurodegenerative condition, various innovative therapeutic strategies have been explored.

View Article and Find Full Text PDF

Revisiting the Metabolism of Donepezil in Rats Using Non-Targeted Metabolomics and Molecular Networking.

Pharmaceutics

January 2025

BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.

: Although donepezil, a reversible acetylcholinesterase inhibitor, has been in use since 1996, its metabolic characteristics remain poorly characterized. Therefore, this study aims to investigate the in vivo metabolism of donepezil using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) based on a molecular networking (MN) approach integrated with a non-targeted metabolomics approach. : After the oral administration of donepezil (30 mg/kg) in rats, urine, feces, and liver samples were collected for LC-HRMS analysis.

View Article and Find Full Text PDF

Formulation Design of Orally Disintegrating Film Using Two Cellulose Derivatives as a Blend Polymer.

Pharmaceutics

January 2025

Laboratory of Advanced Pharmaceutical Process Engineering, Gifu Pharmaceutical University, 5-6-1 Mitahora-Higashi, Gifu 502-8585, Japan.

: Orally disintegrating film (ODF) is prepared using water-soluble polymers as film-forming agents. To improve mechanical and disintegration properties, some polymers need to be blended with others. This study aimed to investigate the utility of hydroxypropyl cellulose (HPC) and hydroxypropyl methyl cellulose (HPMC) as blend film-forming components for ODFs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!