Taking advantage of a sporozoite challenge model established to evaluate the efficacy of new malaria vaccine candidates, we have explored the kinetics of systemic cytokine responses during the prepatent period of Plasmodium falciparum infection in 18 unvaccinated, previously malaria-naive subjects, using a highly sensitive, bead-based multiplex assay, and relate these data to peripheral parasite densities as measured by quantitative real-time PCR. These data are complemented with the analysis of cytokine production measured in vitro from whole blood or PBMC, stimulated with P. falciparum-infected RBC. We found considerable qualitative and quantitative interindividual variability in the innate responses, with subjects falling into three groups according to the strength of their inflammatory response. One group secreted moderate levels of IFN-gamma and IL-10, but no detectable IL-12p70. A second group produced detectable levels of circulating IL-12p70 and developed very high levels of IFN-gamma and IL-10. The third group failed to up-regulate any significant proinflammatory responses, but showed the highest levels of TGF-beta. Proinflammatory responses were associated with more rapid control of parasite growth but only at the cost of developing clinical symptoms, suggesting that the initial innate response may have far-reaching consequences on disease outcome. Furthermore, the in vitro observations on cytokine kinetics presented here, suggest that intact schizont-stage infected RBC can trigger innate responses before rupture of the infected RBC.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.177.8.5736DOI Listing

Publication Analysis

Top Keywords

cytokine responses
8
plasmodium falciparum
8
innate responses
8
levels ifn-gamma
8
ifn-gamma il-10
8
proinflammatory responses
8
infected rbc
8
responses
7
innate
4
innate immune
4

Similar Publications

The ongoing global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the continuous development of innovative vaccine strategies, especially in light of emerging viral variants that could undermine the effectiveness of existing vaccines. In this study, we developed a recombinant virus-like particle (VLP) vaccine based on the Newcastle Disease Virus (NDV) platform, displaying a stabilized prefusion form of the SARS-CoV-2 spike (S) protein. This engineered S protein includes two proline substitutions (K986P, V987P) and a mutation at the cleavage site (RRAR to QQAQ), aimed at enhancing both its stability and immunogenicity.

View Article and Find Full Text PDF

During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.

View Article and Find Full Text PDF

Bovine viral diarrhea virus (BVDV), a pestivirus in the family , is a major livestock pathogen. Horizontal transmission leads to acute transient infections via the oronasal route, whereas vertical transmission might lead to the birth of immunotolerant, persistently infected animals. In both cases, BVDV exerts an immunosuppressive effect, predisposing infected animals to secondary infections.

View Article and Find Full Text PDF

HIV-1 subtype C viruses are responsible for 50% of global HIV burden. However, nearly all currently available reporter viruses widely used in HIV research are based on subtype B. We constructed and characterized a replication-competent HIV-1 subtype C reporter virus expressing mGreenLantern.

View Article and Find Full Text PDF

Robust CD8 T cell responses are critical for the control of HIV infection in both adults and children. Our understanding of the mechanisms driving these responses is based largely on studies of cells circulating in peripheral blood in adults, but the regulation of CD8 T cell responses in tissue sites is poorly understood, particularly in pediatric infections. DNA methylation is an epigenetic modification that regulates gene transcription.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!