Human artificial chromosomes (HACs) are promising reagents for the analysis of chromosome function. While HACs are maintained stably, the segregation mechanisms of HACs have not been investigated in detail. To analyze HACs in living cells, we integrated 256 copies of the Lac operator into a precursor yeast artificial chromosome (YAC) containing alpha-satellite DNA and generated green fluorescent protein (GFP)-tagged HACs in HT1080 cells expressing a GFP-Lac repressor fusion protein. Time-lapse analyses of GFP-HACs and host centromeres in living mitotic cells indicated that the HAC was properly aligned at the spindle midzone and that sister chromatids of the HAC separated with the same timing as host chromosomes and moved to the spindle poles with mobility similar to that of the host centromeres. These results indicate that a HAC composed of a multimer of input alpha-satellite YACs retains most of the functions of the centromeres on natural chromosomes. The only difference between the HAC and the host chromosome was that the HAC oscillated more frequently, at higher velocity, across the spindle midzone during metaphase. However, this provides important evidence that an individual HAC has the capacity to maintain tensional balance in the pole-to-pole direction, thereby stabilizing its position around the spindle midzone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1636871PMC
http://dx.doi.org/10.1128/MCB.00355-06DOI Listing

Publication Analysis

Top Keywords

spindle midzone
12
living cells
8
host centromeres
8
hac
6
hacs
5
artificially constructed
4
constructed novo
4
novo human
4
chromosome
4
human chromosome
4

Similar Publications

Extracellular vesicles (EVs) play crucial roles in cell-cell communication, but the biogenesis of large EVs has remained elusive. Here, we show that the biogenesis of large EVs (>800 nm-2 µm) occurs predominantly through the completion of successful cytokinesis, and the majority of large EVs are midbody remnants (MBRs) with translation activity, and the unique marker MKLP1. Blocking the cell cycle or cytokinesis, genetically or chemically, significantly decreases MBRs and large (800 nm-2 µm), medium (500-800 nm), and small (<300 nm) EVs, suggesting that proliferative cells can also generate all sizes of EVs.

View Article and Find Full Text PDF
Article Synopsis
  • During cell division, the microtubule cytoskeleton undergoes significant reorganization, which is regulated by the phosphorylation of specific proteins, particularly PRC1.
  • PRC1's phosphorylation states influence how it interacts with microtubules, with CDK1 and PLK1 being key mitotic kinases that affect its binding affinity and recruitment.
  • Research shows that dephosphorylation of PRC1 is necessary for the transition from metaphase to anaphase, providing insights into how phosphorylation changes manage the structure of microtubule networks during cell division.
View Article and Find Full Text PDF

Kinesin-5/Cut7 C-terminal tail phosphorylation is essential for microtubule sliding force and bipolar mitotic spindle assembly.

Curr Biol

October 2024

Department of Physics, University of Colorado Boulder, Colorado Avenue, Boulder, CO 80309, USA; Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Colorado Avenue, Boulder, CO 80309, USA. Electronic address:

Kinesin-5 motors play an essential role during mitotic spindle assembly in many organisms: they crosslink antiparallel spindle microtubules, step toward plus ends, and slide the microtubules apart. This activity separates the spindle poles and chromosomes. Kinesin-5s are not only plus-end-directed but can walk or be carried toward MT minus ends, where they show enhanced localization.

View Article and Find Full Text PDF

Background: Tenosynovial giant cell tumor is a rare soft tissue tumor of the synovium of joint, bursae, or tendon sheath. It is divided into localized or diffuse types on the basis of the growth pattern. Localized tenosynovial giant cell tumors are usually benign and treated successfully by excision.

View Article and Find Full Text PDF

An Arabidopsis Kinesin-14D motor is associated with midzone microtubules for spindle morphogenesis.

Curr Biol

August 2024

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA. Electronic address:

The acentrosomal spindle apparatus has kinetochore fibers organized and converged toward opposite poles; however, mechanisms underlying the organization of these microtubule fibers into an orchestrated bipolar array were largely unknown. Kinesin-14D is one of the four classes of Kinesin-14 motors that are conserved from green algae to flowering plants. In Arabidopsis thaliana, three Kinesin-14D members displayed distinct cell cycle-dependent localization patterns on spindle microtubules in mitosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!