Control of cellular senescence by CPEB.

Genes Dev

Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.

Published: October 2006

Cytoplasmic polyadenylation element-binding protein (CPEB) is a sequence-specific RNA-binding protein that promotes polyadenylation-induced translation. While a CPEB knockout (KO) mouse is sterile but overtly normal, embryo fibroblasts derived from this mouse (MEFs) do not enter senescence in culture as do wild-type MEFs, but instead are immortal. Exogenous CPEB restores senescence in the KO MEFs and also induces precocious senescence in wild-type MEFs. CPEB cannot stimulate senescence in MEFs lacking the tumor suppressors p53, p19ARF, or p16(INK4A); however, the mRNAs encoding these proteins are unlikely targets of CPEB since their expression is the same in wild-type and KO MEFs. Conversely, Ras cannot induce senescence in MEFs lacking CPEB, suggesting that it may lie upstream of CPEB. One target of CPEB regulation is myc mRNA, whose unregulated translation in the KO MEFs may cause them to bypass senescence. Thus, CPEB appears to act as a translational repressor protein to control myc translation and resulting cellular senescence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1578696PMC
http://dx.doi.org/10.1101/gad.1438906DOI Listing

Publication Analysis

Top Keywords

wild-type mefs
12
senescence mefs
12
cpeb
10
senescence
8
cellular senescence
8
senescence cpeb
8
mefs
8
mefs lacking
8
control cellular
4
cpeb cytoplasmic
4

Similar Publications

Aims: Acute hypoglycaemia promotes pro-inflammatory cytokine production, increasing the risk for cardiovascular events in diabetes. AMP-activated protein kinase (AMPK) is regulated by and influences the production of pro-inflammatory cytokines. We sought to examine the mechanistic role of AMPK in low glucose-induced changes in the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF), which is elevated in people with diabetes.

View Article and Find Full Text PDF

The nuclear lamina (NL) lines the nuclear envelope (NE) to maintain nuclear structure in metazoan cells. The major NL components, the nuclear lamins contribute to the protection against NE rupture induced by mechanical stress. Lamin A (LA) and a short form of the splicing variant lamin C (LC) are diffused from the nucleoplasm to sites of NE rupture in immortalized mouse embryonic fibroblasts (MEFs).

View Article and Find Full Text PDF

Mammalian receptor-mediated endocytosis (RME) often involves at least one of three isoforms of the large GTPase dynamin (Dyn). Dyn pinches-off vesicles at the plasma membrane and mediates uptake of many viruses, although some viruses directly penetrate the plasma membrane. RME is classically interrogated by genetic and pharmacological interference, but this has been hampered by undesired effects.

View Article and Find Full Text PDF

Bone morphogenetic protein4 (BMP4) plays numerous roles during embryogenesis and can signal either as a homodimer, or as a more active BMP4/7 heterodimer. BMPs are generated as inactive precursor proteins that dimerize and are cleaved to generate the bioactive ligand and inactive prodomain fragments. In humans, heterozygous mutations within the prodomain of BMP4 are associated with birth defects.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how mutations in the LRRK2 gene, linked to Parkinson's disease, affect mitochondrial function and calcium signaling during stress-induced cell damage.
  • In experiments, the researchers found that while wild-type cells exhibited a normal calcium surge in response to mitochondrial depolarization, LRRK2 mutant cells did not, indicating a disruption in the cellular response to damage.
  • Further analysis showed that this lack of response in mutant cells was associated with impaired activation of key kinases involved in the stress response, leading to swollen mitochondria and overall mitochondrial dysfunction.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!