Deuterium enhancement of monodeuterated species has been recognized for more than 30 years as a result of chemical fractionation that results from the difference in zero-point energies of deuterated and hydrogenated molecules. The key reaction is the deuteron exchange in the reaction between HD, the reservoir of deuterium in dark interstellar clouds, and the H3+ molecular ion, leading to the production of H2D+ molecule, and the low temperature in dark interstellar clouds favours this production. Furthermore, the presence of multiply deuterated species have incited our group to proceed further and consider the subsequent reaction of H2D+ with HD, leading to D2H+, which can further react with HD to produce D3+. In pre-stellar cores, where CO was found to be depleted, this production should be increased as CO would normally destroy H3+. The first model including D2H+ and D3+ predicted that these molecules should be as abundant as H2D+. The first detection of the D2H+ was made possible by the recent laboratory measurement for the frequency of the fundamental line of para-D2H+. Here, we present observations of H2D+ and D2H+ towards a sample of dark clouds and pre-stellar cores and show how the distribution of ortho-H2D+ (1(1,0)-1(1,1)) can trace the deuterium factory in pre-stellar cores. We also present how future instrumentation will improve our knowledge concerning the deuterium enhancement of H3+.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2006.1880 | DOI Listing |
Orig Life Evol Biosph
September 2017
School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
The biogenic elements, H, C, N, O, P and S, have a long cosmic history, whose evolution can still be observed in diverse locales of the known universe, from interstellar clouds of gas and dust, to pre-stellar cores, nebulas, protoplanetary discs, planets and planetesimals. The best analytical window into this cosmochemical evolution as it neared Earth has been provided so far by the small bodies of the Solar System, some of which were not significantly altered by the high gravitational pressures and temperatures that accompanied the formation of larger planets and may carry a pristine record of early nebular chemistry. Asteroids have delivered such records, as their fragments reach the Earth frequently and become available for laboratory analyses.
View Article and Find Full Text PDFAstrophys J Lett
October 2016
Observatorio Astronómico Nacional (OAN, IGN), Calle Alfonso XII 3, E-28014 Madrid, Spain.
The detection of complex organic molecules (COMs) toward cold sources such as pre-stellar cores (with T<10 K), has challenged our understanding of the formation processes of COMs in the interstellar medium. Recent modelling on COM chemistry at low temperatures has provided new insight into these processes predicting that COM formation depends strongly on parameters such as visual extinction and the level of CO freeze out. We report deep observations of COMs toward two positions in the L1544 pre-stellar core: the dense, highly-extinguished continuum peak with A ≥30 mag within the inner 2700 au; and a low-density shell with average A ~7.
View Article and Find Full Text PDFAstron Astrophys
September 2016
Facultad de Ciencias, Unidad Asociada de Química-Física Aplicada CSIC-UAM, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
Context: Barnard B1b has revealed as one of the most interesting globules from the chemical and dynamical point of view. It presents a rich molecular chemistry characterized by large abundances of deuterated and complex molecules. Furthermore, it hosts an extremely young Class 0 object and one candidate to First Hydrostatic Core (FHSC) proving the youth of this star forming region.
View Article and Find Full Text PDFNature
January 2009
Initiative in Innovative Computing at Harvard, Cambridge, Massachusetts 02138, USA.
Self-gravity plays a decisive role in the final stages of star formation, where dense cores (size approximately 0.1 parsecs) inside molecular clouds collapse to form star-plus-disk systems. But self-gravity's role at earlier times (and on larger length scales, such as approximately 1 parsec) is unclear; some molecular cloud simulations that do not include self-gravity suggest that 'turbulent fragmentation' alone is sufficient to create a mass distribution of dense cores that resembles, and sets, the stellar initial mass function.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
November 2006
Faculty of Natural Science, Technical University, 09107 Chemnitz, Germany.
This contribution summarizes a variety of results and ongoing activities, which contribute to our understanding of inelastic and reactive collisions involving hydrogen ions. In an overview of our present theoretical knowledge of various HmD+ collision systems (m + n < or = 5), it is emphasized that although the required potential energy surfaces are well characterized, no detailed treatments of the collision dynamics are available to date, especially at the low energies required for astrochemistry. Instead of treating state-to-state dynamics with state of the art methods, predictions are still based on: (i) simple thermodynamical arguments, (ii) crude reaction models such as H atom exchange or proton jump, or (iii) statistical considerations used for describing processes proceeding via long-lived or strongly interacting collision complexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!