Introduction: Tissue factor (TF) plays a pivotal role in the generation of thrombin in atherothrombotic disease. The oxidized phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (oxPAPC), an active compound of minimally oxidized low-density lipoprotein (MM-LDL), induces TF in endothelial cells (EC). The dietary soybean isoflavonoid genistein has been claimed to reverse several processes leading to atherosclerosis and related cardiovascular events via binding to estrogen receptors, generating nitric oxide (NO) or inhibiting tyrosine kinase-dependent pathways.

Methods And Materials: The effects and mechanisms of genistein on activity, antigen expression and mRNA levels of oxPAPC-induced TF were studied in human umbilical vein endothelial cells (HUVEC) and human aortic endothelial cells (HAEC).

Results And Conclusions: Genistein abrogated oxPAPC-induced TF activity in arterial and venous human EC to basal levels, as measured by functional clotting assay, and downregulated oxPAPC-induced antigen expression measured by flow cytometry and mRNA levels quantified by real-time PCR. Western blotting and inhibitor experiments with the estrogen-receptor inhibitor ICI 182,780 and the NO-synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) showed that the effect may be mediated via inhibition of phosphorylation of ERK, but not upstream MEK1/2. The effect is not mediated by the tyrosine kinase inhibitor activity of genistein, as another tyrosine kinase inhibitor (tyrphostin 25) had no effect. Binding to the estrogen receptor or generation of NO are not involved in the action of genistein on TF. In conclusion genistein reduces oxPAPC-induced TF expression and thereby the prothrombotic phenotype of EC, further substantiating and explaining the beneficial effects of dietary genistein in preventing atherosclerosis and related cardiovascular events.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.thromres.2006.07.007DOI Listing

Publication Analysis

Top Keywords

endothelial cells
16
genistein
8
tissue factor
8
oxidized phospholipid
8
atherosclerosis cardiovascular
8
cardiovascular events
8
binding estrogen
8
antigen expression
8
mrna levels
8
tyrosine kinase
8

Similar Publications

Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD.

View Article and Find Full Text PDF

Background: Immune cells within tumor tissues play important roles in remodeling the tumor microenvironment, thus affecting tumor progression and the therapeutic response. The current study was designed to identify key markers of plasma cells and explore their role in high-grade serous ovarian cancer (HGSOC).

Methods: We utilized single-cell sequencing data from the Gene Expression Omnibus (GEO) database to identify key immune cell types within HGSOC tissues and to extract related markers via the Seurat package.

View Article and Find Full Text PDF

Multimodal learning for mapping genotype-phenotype dynamics.

Nat Comput Sci

January 2025

Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

How complex phenotypes emerge from intricate gene expression patterns is a fundamental question in biology. Integrating high-content genotyping approaches such as single-cell RNA sequencing and advanced learning methods such as language models offers an opportunity for dissecting this complex relationship. Here we present a computational integrated genetics framework designed to analyze and interpret the high-dimensional landscape of genotypes and their associated phenotypes simultaneously.

View Article and Find Full Text PDF

SARS-CoV-2 is a viral infection, best studied in the context of epithelial cell infection. Epithelial cells, when infected with SARS-CoV-2 express the viral S-protein, which causes host cells to fuse together into large multi-nucleated cells known as syncytia. Because SARS-CoV-2 infections also frequently present with cardiovascular phenotypes, we sought to understand if S-protein expression would also result in syncytia formation in endothelial cells.

View Article and Find Full Text PDF

The central nervous system (CNS) requires specialized blood vessels to support neural function within specific microenvironments. During neurovascular development, endothelial Wnt/β-catenin signaling is required for BBB development within the brain parenchyma, whereas fenestrated blood vessels that lack BBB properties do not require Wnt/β-catenin signaling. Here, we used zebrafish to further characterize this phenotypic heterogeneity of the CNS vasculature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!